

2.5 Investigating Ecosystems

Question Paper

Exam Papers Practice

To be used by all students preparing for SL IB Environmental Systems & Societies (ESS) Students of other boards may also find this useful

Page 1

Question la

The figure below shows the data for a wolf population and the amount of suitable habitat that is available to the wolves.

Copyright © Save My Exams. All Rights Reserved

Suggest **one** possible method for estimating the wolf population size.

[1mark]

Question 1b

Outline **two** reasons why collecting this type of data on wolves might be challenging.

[2 marks]

Question 2a

Lichens are organisms that grow well on stone walls in unpolluted air. Lichens grow less well in polluted air.

Car exhaust fumes contain sulfur dioxide that pollutes air.

A scientist investigates the effect of pollution by cars in a city.

This is their method:

- Measure the percentage area of a stone wall in the city centre covered by lichen
- Repeat this measurement at different distances from the city centre

The table shows their results.

Distance fr	om city centre in km	Percentage area cove	red by lichen
	,	(%)	
	0	0	
	2	6	
	4	20	
	6	30	
	8	50	
	10	64	
	12	70	

Explain the results shown in the table.

Exam Papers Practic [2marks]

Question 2b

Describe a method to measure the percentage of a stone wall covered by lichen.

[4 marks]

Question 3a

Use the dichotomous key provided to identify the organisms below.

	KEY		
l(a)	Body is completely or partly covered in a shell	Goto2	
(b)	Body is not completely or partly covered in a shell	Limax flavus	
2(a)	Shell is attached to rocks by thin threads	Mytilus edulis	
(b)	Shell is not attached to rocks by thin threads	Go to 3	
3(a)	Shell is a spire that comes to a point	Buccinum undatum	
(b)	Shell is not a spire that comes to a point	Goto4	
4 (a)	Animal has tentacles	Nautilus pompilius	
(b)	Animal has 2 tentacles	Planorbis planorbis	

[5 marks]

Question 3b

Identify three limitations of using dichotomous keys for identifying organisms.

[3 marks]

Question 4a

A group of students compares the distribution of plant species in two fields using the following method:

- Use random sampling
- Use a $0.5 \text{ m} \times 0.5 \text{ m}$ quadrat
- Count the number of each species in a quadrat
- Repeat this method for five quadrats in each field

The tables below show the students' results.

	Field A						
Species	Number of plants in each quadrat						Number
	First	Second	Third	Forth	Fifth	Mean	per m ²
Dandelion	7	0	6	3	4	4	16
Buttercup	2	1	0	3	2	2	6
Violet	1	0	2	1	2	1	5
Heather	2	3	1	2	1	2	7

				Field B			
Species	Number of plants in each quadrat						Number
	First	Second	Third	Forth	Fifth	Mean	per m ²
Dandelion	7	3	2	1	2		
Buttercup	0	0	0	0	0	0	0
Violet	0	0	0	1	0	0	0
Heather	0	0	0	0	0	0	0

i)

Describe how the students would obtain random samples from each field.

ii)

 $\label{eq:calculate} Calculate the mean number of dandelions per quadrat in field {\bf B}.$

iii)

Calculate the number of dandelions per m^2 in field **B**.

[1]

[1]

[2]

[4 marks]

ractice

Question 4b

Describe the differences in species distribution in field **A** and field **B**.

[3 marks]

