

2.4 Further Functions & Graphs

Mark Schemes

Exam Papers Practice

To be used by all students preparing for DP IB Maths AA SL Students of other boards may also find this useful

Question 1

a)i) y-intercepts occur when
$$x = 0$$
.

Sub $x = 0$ into Hx).

 $f(0) = -(0)^5 + 2020$
 $f(0) = 2020$

Hence He y-intercept for f is $(0, 2020)$.

ii) Sub $x = 0$ into $g(x)$.

 $g(0) = \frac{1}{(1-(0))^3} - 2$

Hence He y-intercept for g is $(0, -1)$.

b)i) x-intercepts occur when the function equals zero. Set
$$f(x) = 0$$
 and solve for x on your GDC.

- $x = 4.58$

Hence He x-intercept for f is $(4.58, 0)$.

ii) Set $g(x) = 0$ and solve for x on your GDC.

 $x = 0.370$

Hence He x-intercept for g is $(0.37, 0)$.

Exam Papers Practice

$$\sqrt{(1-x)^3} = 0$$

Hence He equation of the vertical asymptote is

ii) As
$$\infty$$
 tends towards negative infinity (- ∞),

tends towards zero.
$$\frac{1}{\sqrt{(1-x)^5}}$$

$$g(x) = \frac{1}{\sqrt{(1-x)^5}} - 2$$

$$\lim_{x\to\infty} g(x) = 0-2$$

ii) As x tends towards $\pm \infty$ f(x) tends towards 2.

$$\lim_{x\to\pm\infty}f(x)=\frac{2(\pm\infty)+1}{(\pm\infty)-4}$$

Horizontal asymptote: y = 2

Exam Papers Practice

Exam Papers Practice

c) f(x) is undefined when the denominator = 0.

$$x - 2 = 0$$

$$x = 2$$

Vertical asymptote: 2 = 2

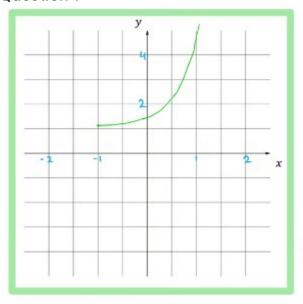
$$f(0) = \ln(0+2)$$

$$f(0) = 0.6931...$$

= 0.693 (3sf)

Exable (2) is undefined when

Vertical asymptote: oc =-2

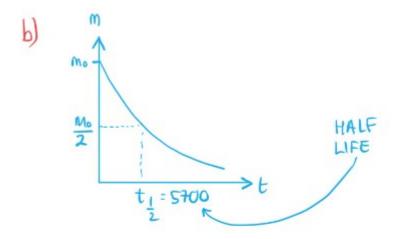

c) Find
$$f'(x)$$
.

 $y = f(x)$
 $y = \ln(x+2)$
 $x = \ln(y+2)$
 $y = e^{x} - 2$
 $f'(x) = e^{x} - 2$
 $f(x) = f''(x)$
 $f''(x)$
 f

Intersection:

(-1.84) -1.84) and (1.14) 14) ctice

Question 4



a) Graph f(x) on your GDC.

b) Find
$$f''(x)$$
 $y = f(x)$
 $y = 0.5e^{2x} + 1$
 $x = 0.5e^{2y} + 1$
 $\frac{x-1}{0.5} = e^{2y}$
 $2y = \ln 2(x-1)$
 $y = \frac{1}{2} \ln 2(x-1)$
 $\therefore A = \frac{1}{2}$
 $\Rightarrow 2$

since half life is 5700y, this is the time it takes for the initial mass one (100g) to half to 50g.

$$\frac{1}{2} = e^{-k5700}$$

$$\ln \frac{1}{2} = \ln e^{-5700k}$$

$$\ln \frac{1}{2} = -5700k$$

$$k = -\ln \frac{1}{2} = 1.22 \times 10^{-4} \text{ (3sf)}$$

d) Sub
$$m_0 = 60$$
 and $t = 2000$ into model
$$m = 60e^{-1.22 \times 10^{-4} (2000)}$$

$$m = 47.09 \quad (3sf)$$

Question 6 a)
$$P = 2500 \quad y = 1$$
 $2500 = P_0(1)^k$

$$P = 3700 \quad y = 2$$
 $3700 = P_0(2)^k$
b) dividing (1) by (2)
$$\frac{2500}{3700} = \left(\frac{1}{2}\right)^k$$

$$P = \log_{\frac{1}{2}}\left(\frac{2500}{3700}\right) = 0.566 = k (3sF) CC$$
sub $k = 0.566$ into (1)
$$2500 = P_0(1)^{0.566} = P_0$$

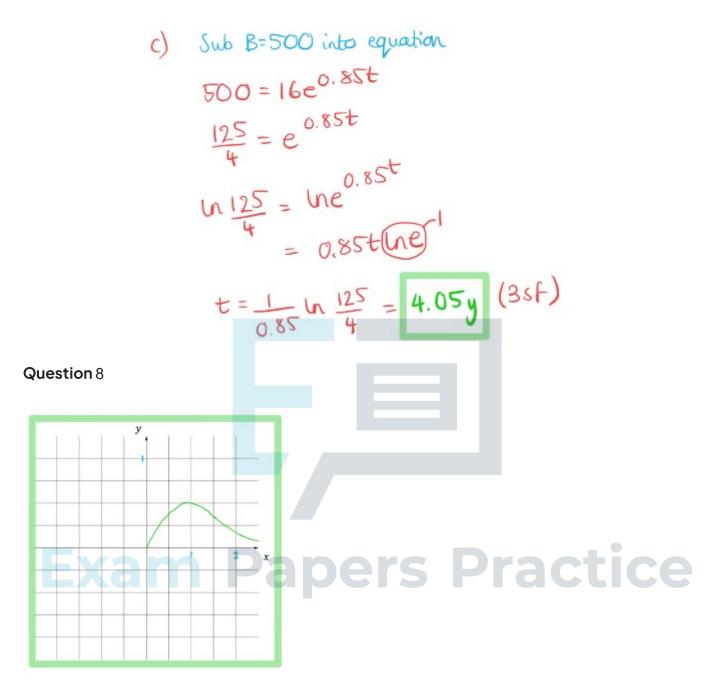
$$k = 0.566$$
 into (1)
 $2500 = P_0(1)^{0.566} = P_0$
 $P_0 = £2500$

c) Using Po and k from (b)

$$P = 2500 \text{ y}^{0.566}$$

at $y = 3$ $P = 2500(3)^{0.566} = 64653.70$
 $y = 4$ $P = 2500(4)^{0.566} = 65476$

exactly!


Exam Papers Practice

Question 7

a)
$$t=0$$

B=16e^{0,85(0)} = 16

b)
$$t=3$$

 $B=16e^{0.85(3)}=205$ (3sf)

a) Graph Vilt) on your GDC.

b) Find the maximum of Vi(t) on your GOL. maximum: (0.8, 0.5) 0.8 x 24 hours = 19.2 hours 19.2 hours = 19 hrs and 12 mins 9 am + 19 hrs and 12 mins = 4:12 am 4:12 am on Tuesday c) Maximum: (0.8, 0.5) Find + when V(+) = 0.25 0.25 = 1.7te-1.25+ Exam: 214348 ers Practice .. days = 2.14348 - 0.8 0.34348 x 24 = 8.24352 0.14351 x 60 = 14.6 2 15 I day 8 hrs and 15 mins

d) Maximum:
$$(0.8, 0.5)$$

Find f when $V(f) = 0.005$
 $0.005 = 1.7te^{-1.25t}$
 $f = 6.11126$ days

 $0.11126 \times 24 = 2.67024$
 $0.67024 \times 60 = 40.2 \approx 40 \text{ mins}$
 $f = 6$ days $f = 2 \text{ hrs} + 40 \text{ mins}$
 $f = 6$ days $f = 2 \text{ hrs} + 40 \text{ mins}$

11: 40 am on Sunday.

e) Graph $V_2(f)$ and find its maximum maximum: $(0.769, 0.5)$

Examinum: $(0.769, 0.5)$

Examinum: $0.8 \approx 0.769$ ractice

 $0.031 \times 24 = 0.744 \text{ hrs}$
 $0.744 \times 60 = 44.64 \text{ mins}$

45 minutes

Question 9

$$0 = -\frac{3}{x-3} \qquad (f(x) \neq 0)$$

No solutions, f(x) does not cross the x-axis.

ii) y-intercepts occur when x = 0.

$$f(0) = -\frac{3}{(0)-3}$$

 $f(0) = 1$
y-intercept at (0,1).

Range =
$$(-\infty, 0) \cup (0, \infty)$$

Example Practice

b) Find
$$f'(x)$$
.

 $y = f(x)$
 $y = -\frac{3}{x-3}$ | swap x and y

 $x = -\frac{3}{y-3}$ | rearrange

 $y = -\frac{3}{x} + 3$
 $\therefore f^{-1}(x) = -\frac{3}{x} + 3$

Sub $x = -1$ into $f^{-1}(x)$.

 $f^{-1}(-1) = -\frac{3}{(-1)} + 3$
 $f^{-1}(-1) = -3 + 3$

The state of the stat

()
$$g(x) = f(x+3) + 1$$

Sub in $(x+3)$ for x and $+1$.
 $g(x) = -\frac{3}{(x+3)=3} + 1$
 $g(x) = -\frac{3}{x} + 1$
For $g(x)$, $x \neq 0$.
Domain = $(-\infty, 0) \cup (0, \infty)$
 $\lim_{x \to \infty} g(x) = -\frac{3}{(\pm \infty)} + 1$
 $\lim_{x \to \infty} g(x) = 0 + 1$