

2.4 Further Functions & Graphs

Contents

- ★ 2.4.1 Reciprocal & Rational Functions
- ★ 2.4.2 Exponential & Logarithmic Functions
- ★ 2.4.3 Solving Equations
- ✤ 2.4.4 Modelling with Functions

2.4.1 Reciprocal & Rational Functions

Reciprocal Functions & Graphs

What is the reciprocal function?

• The **reciprocal function** is defined by $f(x) = \frac{1}{x}, x \neq 0$

- Its domain is the set of all real values except 0
- Its range is the set of all real values except 0
- The reciprocal function has a **self-inverse** nature
 - $f^{-1}(x) = f(x)$
 - $(f \circ f)(x) = x$

What are the key features of the reciprocal graph?

- The graph does not have a y-intercept
- The graph **does not have any roots**
- The graph has two asymptotes
 - A horizontal asymptote at the x-axis: y=0
 - This is the **limiting value** when the absolute value of x gets very large
 - A vertical asymptote at the y-axis: x = 0
 - This is the value that causes the denominator to be zero
- The graph has two axes of symmetry
 - y = x
 - y = -x
- The graph does not have any minimum or maximum points

Linear Rational Functions & Graphs

What is a rational function?

- A rational function is of the form $f(x) = \frac{ax+b}{cx+d}, x \neq -\frac{d}{c}$
- Its domain is the set of all real values except $-\frac{d}{c}$
- Its range is the set of all real values except $\frac{a}{c}$
- The reciprocal function is a special case of a rational function

What are the key features of rational graphs?

- The graph has a **y**-intercept at $\left(0, \frac{b}{d}\right)$ provided $d \neq 0$
- The graph has **one root** at $\left(-\frac{b}{a}, 0\right)$ provided $a \neq 0$
- The graph has two asymptotes
 - A horizontal asymptote: $y = \frac{a}{c}$
 - This is the **limiting value** when the absolute value of x gets very large
 - A vertical asymptote: $x = -\frac{d}{c}$
 - This is the value that causes the denominator to be zero
- The graph **does not have any minimum or maximum points**
- If you are asked to **sketch or draw** a rational graph:
 - Give the **coordinates** of any **intercepts** with the axes
 - Give the equations of the asymptotes

x-intercept occurs when y=0

 $\frac{10-5x}{x+2} = 0 \implies 10-5x=0 \implies x=2$

c) Sketch the graph of f.

(2,0)

2.4.2 Exponential & Logarithmic Functions

Exponential Functions & Graphs

What is an exponential function?

- An exponential function is defined by $f(x) = a^x$, a > 0
- Its domain is the set of all real values
- Its range is the set of all positive real values
- An important exponential function is $f(x) = e^x$
 - Where e is the mathematical constant 2.718...
- Any exponential function can be written using e
 - $a^x = e^{x \ln a}$
 - This is given in the formula booklet

What are the key features of exponential graphs?

- The graphs have a **y-intercept** at (0, 1)
- The graph will always pass through the point (1, a)
- The graphs do not have any roots
- The graphs have **a horizontal asymptote** at the x-axis: y=0
 - For *a* > 1 this is the limiting value when x tends to negative infinity
 - For **0** < **a** < **1** this is the **limiting value** when x tends to **positive infinity**
- The graphs do not have any minimum or maximum points

Logarithmic Functions & Graphs

What is a logarithmic function?

- A logarithmic function is of the form $f(x) = \log_a x, x > 0$
- Its domain is the set of all positive real values
 - You can't take a log of zero or a negative number
- Its range is set of all real values
- $\log_a X$ and a^x are inverse functions
- An important logarithmic function is $f(x) = \ln x$
 - This is the natural logarithmic function $\ln x \equiv \log_{e} x$
 - This is the inverse of e^X
 - $\ln e^x = x$ and $e^{\ln x} = x$
- Any logarithmic function can be written using In

•
$$\log_a x = \frac{\ln x}{\ln a}$$
 using the change of base formula

What are the key features of logarithmic graphs?

- The graphs do not have a y-intercept
- The graphs have **one root** at (1, 0)
- The graphs **will always** pass through the point (a, 1)
- The graphs have a vertical asymptote at the y-axis: x = 0
- The graphs do not have any minimum or maximum points

2.4.3 Solving Equations

Solving Equations Analytically

How can I solve equations analytically where the unknown appears only once?

- These equations can be **solved by rearranging**
- For one-to-one functions you can just apply the inverse
 - Addition and subtraction are inverses

$$y = x + k \Leftrightarrow x = y - k$$

Multiplication and division are inverses

$$y = kx \iff x = \frac{y}{k}$$

Taking the reciprocal is a self-inverse

•
$$y = \frac{1}{x} \Leftrightarrow x = \frac{1}{y}$$

Odd powers and roots are inverses

•
$$y = x^n \iff x = \sqrt[n]{y}$$

• $y = x^n \iff x = y^n$

Exponentials and logarithms are inverses

•
$$y = a^x \Leftrightarrow x = \log_y y$$

$$y = e^x \Leftrightarrow x = \ln y$$

- For **many-to-one functions** you will need to use your knowledge of the functions to find the **other** solutions
 - Even powers lead to positive and negative solutions

$$y = x^n \Leftrightarrow x = \pm \sqrt[n]{y}$$

Modulus functions lead to positive and negative solutions

$$y = |x| \Leftrightarrow x = \pm y$$

• Trigonometric functions lead to infinite solutions using their symmetries

•
$$y = \sin x \Leftrightarrow x = 2k\pi + \sin^{-1}y$$
 or $x = (1+2k)\pi - \sin^{-1}y$

- $y = \cos x \Leftrightarrow x = 2k\pi \pm \cos^{-1}y$
- $y = \tan x \Leftrightarrow x = k\pi + \tan^{-1}y$
- Take care when you apply many-to-one functions to both sides of an equation as this can create additional solutions which are incorrect
 - For example: squaring both sides
 - x + 1 = 3 has one solution x = 2

$$(x+1)^2 = 3^2$$
 has two solutions $x = 2$ and $x = -4$

• Always check your solutions by substituting back into the original equation

How can I solve equations analytically where the unknown appears more than once?

- Sometimes it is possible to simplify expressions to make the unknown appear only once
- Collect all terms involving x on one side and try to simplify into one term
 - For exponents use
 - $a^{f(x)} \times a^{g(x)} = a^{f(x) + g(x)}$

$$\frac{a^{I(x)}}{a^{g(x)}} = a^{f(x)-g(x)}$$

$$a^{f(x)}g(x) = a^{f(x)} \times g(x)$$

- $a^{f(x)} = e^{f(x)\ln a}$
- For logarithms use
 - $\log_a f(x) + \log_a g(x) = \log_a (f(x) \times g(x))$

$$\log_a f(x) - \log_a g(x) = \log_a \left(\frac{f(x)}{g(x)}\right)$$

$$- n \log_a f(x) = \log_a (f(x))^{t}$$

How can I solve equations analytically when the equation can't be simplified?

- Sometimes it is not possible to simplify equations
- Most of these equations cannot be solved analytically
- A special case that can be solved is where the equation can be transformed into a quadratic using a substitution

These will have three terms and involve the same type of function

- Identify the suitable substitution by considering which function is a square of another
 - For example: the following can be transformed into $2y^2 + 3y 4 = 0$

•
$$2x^4 + 3x^2 - 4 = 0$$
 using $y = x^2$

$$2x + 3\sqrt{x} - 4 = 0 \text{ using } y = \sqrt{x}$$

$$\frac{2}{x^6} + \frac{3}{x^3} - 4 = 0 \text{ using } y = \frac{1}{x^3}$$

•
$$2e^{2x} + 3e^x - 4 = 0$$
 using $y = e^x$

- $2 \times 25^{x} + 3 \times 5^{x} 4 = 0$ using $y = 5^{x}$
- $2^{2x+1} + 3 \times 2^x 4 = 0$ using $y = 2^x$

•
$$2(x^3-1)^2 + 3(x^3-1) - 4 = 0$$
 using $y = x^3 - 1$

- To solve:
 - Make the substitution y = f(x)
 - Solve the quadratic equation $ay^2 + by + c = 0$ to get $y_1 \& y_2$
 - Solve $f(x) = y_1$ and $f(x) = y_2$
 - Note that some equations might have zero or several solutions

Can I divide both sides of an equation by an expression?

- When dividing by an expression you must consider whether the **expression could be zero**
- Dividing by an expression that could be zero could result in you losing solutions to the original equation
 - For example: (x + 1)(2x 1) = 3(x + 1)
 - If you divide both sides by (x + 1) you get 2x 1 = 3 which gives x = 2
 - However x = -1 is also a solution to the original equation
- To ensure you **do not lose solutions** you can:
- Split the equation into two equations
 - One where the dividing expression equals zero: x + 1 = 0
 - One where the equation has been divided by the expression: 2x 1 = 3
 - Make the equation equal zero and factorise
 - (x+1)(2x-1) 3(x+1) = 0
 - (x+1)(2x-1-3) = 0 which gives (x+1)(2x-4) = 0
 - Set each factor equal to zero and solve: x + 1 = 0 and 2x 4 = 0

Worked example

Find the exact solutions for the following equations:

a) $5 - 2\log_A x = 0$.

Rearrange using inverse functions $5 - 2\log_4 x = 0$ $2\log_4 x = 5$ $y = x - k \iff x = y + k$ $\log_4 x = \frac{5}{2}$ $y = kx \iff x = \frac{y}{k}$ $x = 4^{5_2}$ $y = \log_a x \iff x = a^y$ $x = (J^2)^5$ $a^m = (J^m)^m$ x = 32

b) $x = \sqrt{x+2}$.

Square both sides (Many-to-one function) $x^{2} = x + 2 \implies x^{2} - x - 2 = 0$ $(x - 2)(x + 1) = 0 \implies x = 2$ or x = -1Check whether each solution is valid x = 2: LHS = 2 RHS = $\sqrt{2+2} = 2$ / x = -1: LHS = -1 RHS = $\sqrt{-1+2} = 1$ x x = 2

c) $e^{2x} - 4e^x - 5 = 0$.

Notice $e^{2x} = (e^{x})^2$, let $y = e^{x}$ $y^2 - 4y - 5 = 0 \Rightarrow (y + 1)(y - 5) = 0$ y=-1 or y=5 Solve using $y = e^x$ $e^x = -1$ has no solutions as $e^x > 0$ $e^x = 5$ \therefore $x = \ln 5$ x = 1n5

Solving Equations Graphically

How can I solve equations graphically?

- To solve f(x) = g(x)
 - One method is to draw the graphs y = f(x) and y = g(x)
 The solutions are the x-coordinates of the points of intersection
 - Another method is to draw the graph y = f(x) g(x) or y = g(x) f(x)
 - The solutions are the roots (zeros) of this graph
 - This method is sometimes quicker as it involves drawing only one graph

Why do I need to solve equations graphically?

- Some equations cannot be solved analytically
 - **Polynomials** of degree higher than 4
 - $x^5 x + 1 = 0$
 - Equations involving different types of functions
 - $e^x = x^2$

2.4.4 Modelling with Functions

Modelling with Functions

What is a mathematical model?

- A mathematical model simplifies a real-world situation so it can be described using mathematics
 - The model can then be used to make predictions
- Assumptions about the situation are made in order to simplify the mathematics
- Models can be refined (improved) if further information is available or if the model is compared to realworld data

How do I set up the model?

- The question could:
 - give you the equation of the model
 - tell you about the relationship
 - It might say the relationship is linear, quadratic, etc
 - ask you to suggest a suitable model
 - Use your knowledge of each model
 - E.g. if it is compound interest then an exponential model is the most appropriate
- You may have to determine a reasonable domain
 - Consider real-life context
 - E.g. if dealing with hours in a day then $0 \le t < 24$
 - E.g. if dealing with physical quantities (such as length) then, x > 0
 - Consider the possible ranges
 - If the outcome cannot be negative then you want to choose a domain which corresponds to a range with no negative values
 - Sketching the graph is helpful to determine a suitable domain

Which models might I need to use?

- You could be given any model and be expected to use it
- Common models include:
 - Linear
 - Arithmetic sequences
 - Linear regression
 - Quadratic
 - Projectile motion
 - The height of a cable supporting a bridge
 - Profit
 - Exponential
 - Geometric sequences
 - Exponential growth and decay
 - Compound interest

- Logarithmic
 - Richter scale for the magnitude of earthquakes
- Rational
 - Temperature of a cup of coffee
- Trigonometric
 - The depth of a tide

How do I use a model?

- You can use a model by substituting in values for the variable to estimate outputs
 - For example: Let *h*(*t*) be the height of a football *t* seconds after being kicked
 - h(3) will be an estimate for the height of the ball 3 seconds after being kicked
- Given an output you can form an equation with the model to estimate the input
 - For example: Let *P*(*n*) be the profit made by selling *n* items
 - Solving P(n) = 100 will give you an estimate for the number of items needing to be sold to make a profit of 100
- If your variable is **time** then substituting t = 0 will give you the **initial value** according to the model
- Fully understand the **units for the variables**
 - If the units of P are measured in **thousand dollars** then P = 3 represents \$3000
- Look out for **key words** such as:
 - Initially
 - Minimum/maximum
 - Limiting value

What do I do if some of the parameters are unknown?

- A general method is to form equations by substituting in given values
 - You can form multiple equations and solve them simultaneously using your GDC
 - This method works for all models
- The initial value is the value of the function when the variable is 0
 - This is normally one of the parameters in the equation of the model

a)

b)

C)

The temperature, $T^{\circ}C$, of a cup of coffee is monitored. Initially the temperature is 80°C and 5 minutes later it is 40°C. It is suggested that the temperature follows the model:

$$T(t) = Ae^{kt} + 16, t \ge 0.$$

where t is the time, in minutes, after the coffee has been made.

Find the time taken for the temperature of the coffee to reach 30°C.

For more help, please visit www.exampaperspractice.co.uk

