Name:
2.4 Graphs
Class:
Date:

Time:
92 minutes
Marks:
67 marks

Comments:

Q1.

Figure 1 is a graph that shows the time it takes to travel between six locations in a warehouse. The six locations have been labelled with the numbers $1-6$. When there is no edge between two nodes in the graph this means that it is not possible to travel directly between those two locations. When there is an edge between two nodes in the graph the edge is labelled with the time (in minutes) it takes to travel between the two locations represented by the nodes.

Figure 1

(a) The graph is represented using an adjacency matrix, with the value 0 being used to indicate that there is no edge between two nodes in the graph.

A value should be written in every cell.
Complete the unshaded cells in Table 1 so that it shows the adjacency matrix for Figure 1.

Table 1

	1	2	3	4	5	6
1						
2						
3						
4						
5						
6						

(b) Instead of using an adjacency matrix, an adjacency list could be used to represent the graph. Explain the circumstances in which it would be more appropriate to use
an adjacency list instead of an adjacency matrix.
\qquad
\qquad
\qquad
\qquad
(c) State one reason why the graph shown in Figure $\mathbf{1}$ is not a tree.
\qquad
\qquad
(d) The graph in Figure 1 is a weighted graph. Explain what is meant by a weighted graph.
\qquad

Figure 2 contains pseudo-code for a version of Djikstra's algorithm used with the graph in Figure 1.
Q is a priority queue which stores nodes from the graph, maintained in an order based on the values in array D. The reordering of Q is performed automatically when a value in D is changed.

AM is the name given to the adjacency matrix for the graph represented in Figure 1.
EXAM PAPER gron 2 PRACTICE

```
Q empty queue
FOR C1 \leftarrow 1 TO 6
    D[C1]}\leftarrow2
    P[C1] \leftarrow-1
    ADD C1 TO Q
ENDFOR
D[1] \leftarrow0
WHILE Q NOT EMPTY
    U }\leftarrow\mathrm{ get next node from Q
    remove U from Q
    FOR EACH V IN Q WHERE AM[U, V] > 0
        A}\leftarrow\textrm{D}[\textrm{U}]+\textrm{AM}[\textrm{U},\textrm{V}
        IF A < D[V] THEN
        D[V]}\leftarrow
        P[V]}\leftarrow
```

ENDIF
ENDFOR
ENDWHILE
OUTPUT D[6]
(e) Complete the unshaded cells of Table 2 to show the result of tracing the algorithm shown in Figure 2. Some of the trace, including the maintenance of Q, has already been completed for you.

Table 2

					D						P					
U	Q	v	A		1	2	3	4	5	6	1	2	3	4	5	6
-	1,2,3,4,5,6	-			20	20	20	20	20	20	-1	-1	-1	-1	-1	-1
					0											
1	2,3,4,5,6	2														
		3														
		4														
		6														
2	3,4,5,6	3														
3	4,5,6	6														
4	5,6	5														
5	6	6														
6	-															

f) What does the output from the algorithm in Figure 2 represent?

AM W/A D
\qquad
(g) The contents of the array P were changed by the algorithm. What is the purpose of the array P ?
\qquad
\qquad
\qquad
\qquad

Q2.

The Cat transportation company (CTC) is a business that specialises in preparing cats for cat shows.

They need to take five cats to the AQA cat show. They will transport the cats in their van. CTC owns only one van.

They cannot put all the cats in their van at the same time because some of the cats get stressed when in the company of some of the other cats. The cats would not therefore arrive in top condition for the cat show if they were all in the van at the same time.

The graph in Figure 1 shows the relationships between the five cats (labelled 1 to 5). If there is an edge between two cats in the graph then they cannot travel in the van together at the same time.

Figure 1

(b) Represent the graph shown in Figure 1 as an adjacency list by completing Table 1

Vertex (in Figure 1)	Adjacent vertices
1	
2	
3	
4	
5	

(c) Table 2 shows how the graph in Figure $\mathbf{1}$ can be represented as an adjacency matrix.

Table 2

Vertex (in Figure 1)	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
$\mathbf{1}$	0	1	1	0	0
$\mathbf{2}$	1	0	1	1	0
$\mathbf{3}$	1	1	0	0	1
$\mathbf{4}$	0	1	0	0	0
$\mathbf{5}$	0	0	1	0	0

Explain the circumstances in which it is more appropriate to represent a graph using an adjacency list instead of an adjacency matrix.
\qquad
\qquad
\qquad

(d) Figure 2 shows an algorithm, written in pseudo-code, that CTC use.

Figure 2

WHTIE B < $\operatorname{IF} \mathrm{M}[\mathrm{A}, \mathrm{B}]=1$ THEN

IF Cat [B] $=$ C
THEN
$B \leftarrow 1$
$\mathrm{C} \leftarrow \mathrm{C}+1$
$\mathrm{ELSE} \mathrm{B} \longleftarrow \mathrm{B}+1$
ENDIF
$E L S E B \leftarrow B+1$
ENDIF
ENDWHILE
$\operatorname{Cat}[A] \leftarrow C$
ENDFOR
The two-dimensional array, m , is used to store the adjacency matrix shown in Table 2.

Complete Table 3 to show the result of tracing the algorithm in Figure 2.
Table 3

					Cat				
NoOfCats	A	B	C		1	2	3	4	5
						-			
	-				\square	-			
					-	-			
									\square

(e) Explain the purpose of the algorithm in Figure 2.
\qquad

E(f) After a cat show, CTC needs to return the cats to their owners. They can have all the cats in the van at the same time because the show is now finished.

CTC likes to plan the return journey so that the shortest possible distance is travelled by the van. This is an example of an intractable problem.

What is meant by an intractable problem?
\qquad
\qquad
\qquad
\qquad
(g) What approach might a programmer take if asked to solve an intractable problem?
\qquad
\qquad

Q3.
(a) Figure 1 shows four graphs, labelled with the letters \mathbf{A} to \mathbf{D}.

Figure 1

Graph A

Graph C

Graph B

Graph D

Complete Table 1 below. In the Correct letter (A-D) column write the appropriate letter from \mathbf{A} to \mathbf{D} to indicate which graph in Figure 1 matches the description in the Description column.

Do not use the same letter more than once. You will not need to use all of the letters.

Table 1

Description	Correct letter (A-D)
A graph that is not connected	
A graph that is a tree	

(b) It is possible to represent a computer network as a graph, with each vertex representing a router and each edge representing a communications link.

Figure 2 is a graph representation of a medium-sized computer network that consists of 6 routers and 7 communications links. The routers have been numbered from 1 to 6 .

Figure 2

Complete Table 2 below to show how the graph in Figure $\mathbf{2}$ would be stored using an adjacency matrix.

Table 2

(c) Figure $\mathbf{2}$ is repeated here.

Figure 2 (Repeated)

A simple method of determining the shortest path through a network from one router to another is to perform a breadth first search of the graph representation of the network.

The algorithm in Figure 3 can be used to perform a breadth first search of a graph. It makes use of two subroutines, PutVertexIntoQueue and GetVertexFromQueue, which are explained below the algorithm.

Figure 3

```
Procedure ShortestRoute(S, D)
    PutVertexIntoQueue(S)
    Discovered[S] \leftarrow True
    Found }\leftarrow\leftarrowFals
    While Queue is Not Empty And Found = False Do
            V = GetVertexFromQueue
            For each vertex U which is adjacent to V Do
                If Discovered[U] = False And Found = False Then
                PutVertexIntoQueue(U)
                        Discovered[U]
                        If U = D Then Found \leftarrow True
                EndIf
            EndFor
    EndWhile
    If Found = True Then
        C Frue D
            Output D
            Repeat 
                Output C
            Until C = S
    EndIf
EndProcedure
```

- PutVertexIntoQueue is a subroutine that adds a vertex to the rear of a queue.
- A. Getvertexfromoueue is a subroutine that returns the name of the vertex at

Complete the trace table below to show how the Discovered and Parent arrays, the variable Found and the queue contents are updated, together with what output is produced by the algorithm when it is called using ShortestRoute $(1,6)$.

Before the algorithm is carried out, all cells in the Discovered array are set to the value False and the queue is empty.

The values of the variables $S, D, V, \quad u$ and c have already been entered into the table for you.

The letter F has been used as an abbreviation for False. You should use T as an abbreviation for True.

\qquad

Q4.
A graph can be drawn to represent a maze. In such a graph, each graph vertex represents one of the following:

- the entrance to or exit from the maze
- a place where more than one path can be taken
- a dead end.

Edges connect the vertices according to the paths in the maze.
Diagram 1 shows a maze and Diagram 2 shows one possible representation of this maze.

Position 1 in Diagram 1 corresponds to vertex 1 in Diagram 2 and is the entrance to the maze. Position 7 in Diagram 1 is the exit to the maze and corresponds to vertex 7 .
Dead ends have been represented by the symbol \square in Diagram 2.

Diagram 3 shows a simplified undirected graph of this maze with dead ends omitted.

Diagram 1

Diagram 2

Representation of maze including dead ends

Diagram 3

Graph representing maze
with dead ends omitted
(a) The graph in Diagram 3 is a tree.

State one property of the graph in Diagram 3 that makes it a tree.
\qquad
\qquad
(b) The graphs of some mazes are not trees.

Describe a feature of a maze that would result in its graph not being a tree.
\qquad
\qquad
(c) Complete the table below to show how the graph in Diagram 3 would be stored using an adjacency matrix.

(d) (i) What is a recursive routine?
\qquad
\qquad

Explain what this stack will be used for and why a stack is appropriate.
\qquad
\qquad
\qquad
\qquad

Diagram $\mathbf{3}$ is repeated here so that you can answer Question (e) without having to turn pages.

(e) A recursive routine can be used to perform a depth-first search of the graph that represents the maze to test if there is a route from the entrance (vertex 1) to the exit (vertex 7).

The recursive routine in the diagram below is to be used to explore the graph in Diagram 3. It has two parameters, v (the current vertex) and Endv (the exit vertex).

```
Procedure DFS(V, EndV)
    Discovered[V] \leftarrow True
    If V = EndV Then Found
    For each vertex U which is connected to V Do
        If Discovered [U] = False Then DFS(U, EndV)
    EndFor
    CompletelyExplored[V] \leftarrow True
EndProcedure
```

Complete the trace table below to show how the Discovered and CompletelyExplored flag arrays and the variable Found are updated by the
algorithm when it is called using $\operatorname{DFS}(1,7)$.
The details of each call and the values of the variables v, \cup and Endv have already been entered into the table for you. The letter F has been used as an abbreviation for False. You should use T as an abbreviation for True.

				Discovered							CompletelyExplored							
Call	V	U	EndV	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	Found
	-	-		F	F	F	F	F	F	F	F	F	F	F	F	F	F	F
DFS (1,7)	1	2	7															
DFS $(2,7)$	2	1	7															
		3	7															
DFS (3,7)	3	2	7															
DFS $(2,7)$	2	4	7															
DFS $(4,7)$	4	2	7															
		5	7															
DFS $(5,7)$	5	4	7															
		6	7															
DFS $(6,7)$	6	5	7															
DFS $(5,7)$	5	7	7															
DFS $(7,7)$	7	5	7															
DFS $(5,7)$	5	-	7															
DFS $(4,7)$	4	-	7															
DFS $(2,7)$	2	-	7															
DFS $(1,7)$	1	-	7															
																(To	12	(5) marks)

The table below shows an adjacency matrix representation of a directed graph (digraph).

	1	2	3	4	5
1	0	1	0	1	0
$F \quad 2$	0	0	1	1	0
$r 3$	0	0	0	0	0
O 4	0	0	0	0	1
T 5	0	1	0	0	0

(a) Complete this unfinished diagram of the directed graph.

(b) Directed graphs can also be represented by an adjacency list.

Explain under what circumstances an adjacency matrix is the most appropriate method to use to represent a directed graph, and under what circumstances an adjacency list is more appropriate.
\qquad

(d) Data may be stored as a binary tree.

Show how the following data may be stored as a binary tree for subsequent processing in alphabetic order by drawing the tree. Assume that the first item is the root of the tree and the rest of the data items are inserted into the tree in the order given.

Data items: Jack, Bramble, Snowy, Butter, Squeak, Bear, Pip
(e) A binary tree such as the one created in part (d) could be represented using one array of records or, alternatively, using three one-dimensional arrays.

Describe how the data stored in the array(s) could be structured for one of these two possible methods of representation.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

