

Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme

Suitable for all boards

Designed to test your ability and thoroughly prepare you

2.4 Further Functions & Graphs

IB Maths - Revision Notes

AA SL

2.4.1 Reciprocal & Rational Functions

Reciprocal Functions & Graphs

What is the reciprocal function?

• The reciprocal function is defined by
$$f(x) = \frac{1}{x}, x \neq 0$$

- Its domain is the set of all real values except 0
- Its range is the set of all real values except 0
- The reciprocal function has a self inverse nature

$$f^{-1}(x) = f(x)$$

$$(f \circ f)(x) = x$$

What are the key features of the reciprocal graph?

- The graph does not have a y-intercept
- The graph does not have any roots
- The graph has two asymptotes
 - A horizontal asymptote at the x-axis: y=0• This is the **limiting value** when the absolute value of x gets very large
 - A vertical asymptote at the y-axis: x = 0
 - This is the value that causes the **denominator to be zero**
- The graph has two axes of symmetry
 - V = X
 - y = -x
- The graph does not have any minimum or maximum points

Linear Rational Functions & Graphs

What is a rational function?

- A rational function is of the form $f(x) = \frac{ax+b}{cx+d}, x \neq -\frac{d}{c}$
- Its domain is the set of all real values except $-\frac{d}{c}$
- Its range is the set of all real values except
 C
- The reciprocal function is a special case of a rational function

What are the key features of rational graphs?

- The graph has a *y*-intercept at $\left(0, \frac{b}{d}\right)$ provided $d \neq 0$
- The graph has **one root** at $\left(-\frac{b}{a}, 0\right)$ provided $a \neq 0$
- The graph has two asymptotes
 - A horizontal asymptote: $y = \frac{a}{a}$
 - This is the **limiting value** when the absolute value of *x* gets very large
 - A vertical asymptote: $x = -\frac{d}{c}$
- This is the value that causes the **denominator to be zero**

Copyrigh The graph does not have any minimum or maximum points

© 2024 Elf you are asked to **sketch or draw** a rational graph:

- Give the **coordinates** of any **intercepts** with the axes
- Give the equations of the asymptotes

© 2024 Exam Papers Practice

Worked example

The function f is defined by $f(x) = \frac{10-5x}{x+2}$ for $x \neq -2$.

- a) Write down the equation of
 - (i) the vertical asymptote of the graph of $\,f$,
 - (ii) the horizontal asymptote of the graph of f.

(i) Vertical asymptote is when denominator equals zero x+2=0 x = -2

(ii) Horizontal asymptote is limiting value as x gets large $\lim_{x \to \infty} \frac{10-5x}{x+2} = \lim_{x \to \infty} \frac{-5x}{x} \qquad y = -5$

b) Find the coordinates of the intercepts of the graph of f with the axes.

© 2024 Exam Papers Practice

C)

2.4.2 Exponential & Logarithmic Functions

Exponential Functions & Graphs

What is an exponential function?

- An exponential function is defined by $f(x) = a^x$, a > 0
- Its domain is the set of all real values
- Its range is the set of all positive real values
- An important exponential function is $f(x) = e^x$
 - Where e is the mathematical constant 2.718...
- Any exponential function can be written using e
 - $a^x = e^{x \ln a}$
 - This is given in the formula booklet

What are the key features of exponential graphs?

- The graphs have a y-intercept at (0, 1)
- The graph will always pass through the point (1, a)
- The graphs do not have any roots
- The graphs have **a horizontal asymptote** at the *x*-axis: y=0
 - For *a* > 1 this is the limiting value when *x* tends to negative infinity
 - For **0** < *a* < **1** this is the **limiting value** when *x* tends to **positive infinity**
- The graphs do not have any minimum or maximum points

Exam Papers Practice

© 2024 Exam Papers Practice

• Any logarithmic function can be written using In

•
$$\log_a x = \frac{\ln x}{\ln a}$$
 using the change of base formula

What are the key features of logarithmic graphs?

- The graphs do not have a y-intercept
- The graphs have **one root** at (1, 0)
- The graphs will always pass through the point (a, 1)
- The graphs have a vertical asymptote at the y-axis: x = 0
- The graphs do not have any minimum or maximum points

2.4.3 Solving Equations

Solving Equations Analytically

$How can {\tt Isolve equations analytically where the unknown appears only once?}$

- These equations can be **solved by rearranging**
- For one-to-one functions you can just apply the inverse
 - Addition and subtraction are inverses

$$y = x + k \iff x = y - k$$

• Multiplication and division are inverses

•
$$y = kx \Leftrightarrow x = \frac{y}{k}$$

Taking the reciprocal is a self-inverse

•
$$y = \frac{1}{x} \Leftrightarrow x = \frac{1}{v}$$

Odd powers and roots are inverses

•
$$y = x^n \iff x = \sqrt[n]{y}$$

$$y = x^n \iff x = y^n$$

• Exponentials and logarithms are inverses

•
$$y = a^x \Leftrightarrow x = \log_a y$$

• $y = e^x \Leftrightarrow x = \ln y$

 For many-to-one functions you will need to use your knowledge of the functions to find the Copyrigiother solutions

© 2024 ExarEven powers lead to positive and negative solutions

$$y = x^n \Leftrightarrow x = \pm \sqrt[n]{y}$$

Modulus functions lead to positive and negative solutions

$$y = |x| \Leftrightarrow x = \pm y$$

- Trigonometric functions lead to infinite solutions using their symmetries
 - $y = \sin x \Leftrightarrow x = 2k\pi + \sin^{-1}y$ or $x = (1 + 2k)\pi \sin^{-1}y$
 - $y = \cos x \Leftrightarrow x = 2k\pi \pm \cos^{-1}y$
 - $y = \tan x \Leftrightarrow x = k\pi + \tan^{-1} y$
- Take care when you apply many-to-one functions to both sides of an equation as this can create additional solutions which are incorrect
 - For example: squaring both sides

- x + 1 = 3 has one solution x = 2
- $(x+1)^2 = 3^2$ has two solutions x = 2 and x = -4
- Always check your solutions by substituting back into the original equation

How can I solve equations analytically where the unknown appears more than once?

- Sometimes it is possible to simplify expressions to make the unknown appear only once
- Collect all terms involving x on one side and try to simplify into one term
 - For exponents use

$$a^{f(x)} \times a^{g(x)} = a^{f(x) + g(x)}$$

$$\frac{a^{f(x)}}{ag(x)} = a^{f(x)} - g(x)$$

- $(a^{f(x)})g(x) = a^{f(x) \times g(x)}$
- $a^{f(x)} = e^{f(x)\ln a}$
- For logarithms use

•
$$\log_a f(x) + \log_a g(x) = \log_a (f(x) \times g(x))$$

$$\log_a f(x) - \log_a g(x) = \log_a \left(\frac{I(x)}{g(x)}\right)$$

•
$$n\log_a f(x) = \log_a (f(x))^n$$

How can I solve equations analytically when the equation can't be simplified?

- Sometimes it is not possible to simplify equations
- Most of these equations cannot be solved analytically
- A special case that can be solved is where the equation can be transformed into a quadratic using a substitution
- These will have three terms and involve the same type of function
 - Identify the suitable substitution by considering which function is a square of another
 - For example: the following can be transformed into $2y^2 + 3y 4 = 0$

•
$$2x^4 + 3x^2 - 4 = 0$$
 using $y = x^2$

•
$$2x + 3\sqrt{x} - 4 = 0$$
 using $y = \sqrt{x}$

$$\frac{2}{x^6} + \frac{3}{x^3} - 4 = 0 \text{ using } y = \frac{1}{x^3}$$

- $2e^{2x} + 3e^{x} 4 = 0$ using $y = e^{x}$
- $2 \times 25^{x} + 3 \times 5^{x} 4 = 0$ using $y = 5^{x}$
- $2^{2x+1} + 3 \times 2^x 4 = 0$ using $y = 2^x$
- $2(x^3-1)^2 + 3(x^3-1) 4 = 0$ using $y = x^3 1$

- To solve:
 - Make the substitution y = f(x)
 - Solve the quadratic equation $ay^2 + by + c = 0$ to get $y_1 \& y_2$
 - Solve $f(x) = y_1$ and $f(x) = y_2$
 - Note that some equations might have zero or several solutions

Can I divide both sides of an equation by an expression?

- When dividing by an expression you must consider whether the expression could be zero
- Dividing by an expression that could be zero could result in you losing solutions to the original equation
 - For example: (x+1)(2x-1) = 3(x+1)
 - If you divide both sides by (x + 1) you get 2x 1 = 3 which gives x = 2
 - However x = -1 is also a solution to the original equation
- To ensure you **do not lose solutions** you can:
 - Split the equation into two equations
 - One where the dividing expression equals zero: x + 1 = 0
 - One where the equation has been divided by the expression: 2x 1 = 3
 - Make the equation equal zero and factorise
 - (x+1)(2x-1) 3(x+1) = 0
 - (x+1)(2x-1-3) = 0 which gives (x+1)(2x-4) = 0
 - Set each factor equal to zero and solve: x + 1 = 0 and 2x 4 = 0

Exam Tip

 A common mistake that students make in exams is applying functions to each term rather Copyright than to each side

- © 2024 Exam Papers Practice • For example: Starting with the equation $\ln x + \ln(x-1) = 5$ it would be incorrect to write $e^{\ln x} + e^{\ln(x-1)} = e^5$ or $x + (x-1) = e^5$
 - Instead it would be correct to write $e^{\ln x + \ln(x-1)} = e^5$ and then simplify from there

Worked example

Find the exact solutions for the following equations:

a)
$$5 - 2\log_4 x = 0$$

Rearrange using inverse functions

$$5 - 2 \log_{x} x = 0$$

$$2 \log_{y} x = 5$$

$$\log_{y} x = 5$$

$$\log_{y} x = \frac{5}{2} - \frac{1}{3} = kx \iff x = \frac{3}{k}$$

$$x = 4 + \frac{5}{k} + \frac{1}{3} = \log_{x} \iff x = \frac{3}{k}$$

$$x = (17)^{5} + \frac{3^{2}}{4^{2}} + \frac{3^{2}}{4^{2}} = (\sqrt{3}a)^{2}$$
b)

$$x = \sqrt{x+2}.$$
Square both sides (Many-to-one-function)

$$x^{2} = x + 2 \implies x^{2} - x - 2 = 0$$

$$(x - 2)(x + 1) = 0 \implies x = 2 \text{ or } x = -1$$
(heck whether each solution is valid

$$x = 2x + LHS = 2 \text{ RHS} = \sqrt{2+2} = 2 \text{ Practice}$$
2024 Exam Paper Present

$$x = 2!$$
c)
$$e^{2x} - 4e^{x} - 5 = 0.$$
Notice $e^{2x} = (e^{2})^{2}$, let $y = e^{x}$

$$y^{2} - 4y^{2} - 5 = 0 \implies (y + 1)(y - 5) = 0$$

$$y = -1 \text{ or } y = 5$$
Solve using $y = e^{x}$

$$e^{x} = -1 \text{ has no solutions as } e^{x} > 0$$

$$e^{x} = 5 \therefore x = \ln 5$$

Page 12 of 16 For more help visit our website www.exampaperspractice.co.uk

Solving Equations Graphically

How can I solve equations graphically?

- To solve f(x) = g(x)
 - One method is to draw the graphs y = f(x) and y = g(x)
 - The solutions are the *x*-coordinates of the points of intersection
 - Another method is to draw the graph y = f(x) g(x) or y = g(x) f(x)
 - The solutions are the roots (zeros) of this graph
 - This method is sometimes quicker as it involves drawing only one graph

Why do I need to solve equations graphically?

- Some equations cannot be solved analytically
 - Polynomials of degree higher than 4

- Equations involving different types of functions
 - $e^x = x^2$

💽 Exam Tip

- On a calculator paper you are allowed to solve equations using your GDC unless the question asks for an algebraic method
- If your answer needs to be an exact value then you might need to solve analytically to get the exact value

2.4.4 Modelling with Functions

Modelling with Functions

What is a mathematical model?

- A mathematical model simplifies a real-world situation so it can be described using mathematics
 - The model can then be used to make predictions
- Assumptions about the situation are made in order to simplify the mathematics
- Models can be **refined** (improved) if further information is available or if the model is compared to real-world data

How do I set up the model?

- The question could:
 - give you the equation of the model
 - tell you about the relationship
 - It might say the relationship is linear, quadratic, etc
 - ask you to suggest a suitable model
 - Use your knowledge of each model
 - E.g. if it is compound interest then an exponential model is the most appropriate
- You may have to determine a reasonable domain
 - Consider real-life context
 - E.g. if dealing with hours in a day then
 - E.g. if dealing with physical quantities (such as length) then
 - Consider the possible ranges
 - If the outcome cannot be negative then you want to choose a domain which
 - corresponds to a range with no negative values
 - Sketching the graph is helpful to determine a suitable domain

© 2024 Exam Papers Practice

Which models might I need to use?

- You could be given any model and be expected to use it
- Common models include:
 - Linear
 - Arithmetic sequences
 - Linear regression
 - Quadratic
 - Projectile motion
 - The height of a cable supporting a bridge
 - Profit
 - Exponential
 - Geometric sequences

- Exponential growth and decay
- Compound interest
- Logarithmic
 - Richterscale for the magnitude of earthquakes
- Rational
 - Temperature of a cup of coffee
- Trigonometric
 - The depth of a tide

Howdoluse a model?

- You can use a model by substituting in values for the variable to estimate outputs
 - For example: Let h(t) be the height of a football t seconds after being kicked
 - h(3) will be an estimate for the height of the ball 3 seconds after being kicked
- Given an output you can form an equation with the model to estimate the input
 - For example: Let P(n) be the profit made by selling n items
 - Solving P(n) = 100 will give you an estimate for the number of items needing to be sold to make a profit of 100
- If your variable is **time** then substituting *t* = 0 will give you the **initial value** according to the model
- Fully understand the units for the variables
- If the units of Pare measured in thousand dollars then P=3 represents \$3000
- Look out for key words such as:
 - Initially
 - Minimum/maximum
 - Limiting value

What do I do if some of the parameters are unknown?

- A general method is to form equations by substituting in given values
- Copyright You can form multiple equations and solve them simultaneously using your GDC
- © 2024 Exam This method works for all models
 - The **initial value** is the value of the function when the variable is 0
 - This is normally one of the parameters in the equation of the model

🖉 Worked example

The temperature, $T^{\circ}C$, of a cup of coffee is monitored. Initially the temperature is 80°C and 5 minutes later it is 40°C. It is suggested that the temperature follows the model:

$$T(t) = Ae^{kt} + 16, t \ge 0.$$

where t is the time, in minutes, after the coffee has been made.

a) State the value of A.

© 2024 Exam Papers Practice

c) Find the time taken for the temperature of the coffee to reach 30°C.

Find t such that
$$T(t) = 30$$

 $30 = 64e^{kt} + 16$ Leave as k until the end to save
 $64e^{kt} = 14$ writing $\frac{1}{5}\ln\frac{3}{8}$ each time
 $e^{kt} = \frac{7}{32}$
 $kt = \ln\frac{7}{32}$
 $t = \frac{\ln\frac{7}{32}}{k} = \frac{\ln\frac{7}{32}}{\frac{1}{5}\ln\frac{3}{8}} = 7.7476.$