Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme
Suitable for all boards
Designed to test your ability and thoroughly prepare you

2.4 Further Functions \& Graphs

AA SL

2.4.1 Reciprocal \& Rational Functions

Reciprocal Functions \& Graphs

What is the reciprocal function?

- The reciprocal function is defined by $f(x)=\frac{1}{x}, x \neq 0$
- Its domain is the set of all real values except 0
- Its range is the set of all real values except 0
- The reciprocal function has a self-inverse nature
- $f^{-1}(x)=f(x)$
- $(f \circ f)(x)=x$

What are the key features of the reciprocal graph?

- The graph does not have a y-intercept
- The graph does not have any roots
- The graph has two asymptotes
- A horizontal asymptote at the x-axis: $y=0$
- This is the limiting value when the absolute value of x gets verylarge
- A vertical asymptote at the y-axis: $X=0$
- This is the value that causes the denominator to bezero
- The graph has two axes of symmetry
- $y=x$
- $y=-x$
- The graph does not have any minimum or maximumpoints

Page 1 of 16
For more help visit our website www.exampaperspractice.co.uk

Linear Rational Functions \& Graphs

What is a rationalfunction?

- A rational function is of the form $f(x)=\frac{a x+b}{c x+d}, x \neq-\frac{d}{c}$
- Its domain is the set of all real values except $-\frac{d}{c}$
- Its range is the set of all real values except $\frac{a}{c}$
- The reciprocal function is a special case of a ratio nal function

What are the key features of rationalgraphs?

- The graph has a \boldsymbol{y}-intercept at $\left(0, \frac{b}{d}\right)$ provided $d \neq 0$
- The graph has one root at $\left(-\frac{b}{a}, 0\right)$ provided $a \neq 0$
- The graph has two asymptotes
- A horizontal asymptote: $y=\frac{a}{c}$
- This is the limiting value when the absolute value of x gets verylarge
- A vertical asymptote: $X=-\frac{d}{c}$
- This is the value that causes the denominator to bezero
- The graph does not have any minimum or maximum points
- If you are asked to sketch or draw a ratio nal graph:
- Give the coordinates of any intercepts with the axes
- Give the equations of the asymptotes

Worked example

The function f is defined by $f(x)=\frac{10-5 x}{x+2}$ for $x \neq-2$.
a) Write down the equation of
(i) the vertical asymptote of the graph of f,
(ii) the horizontal asymptote of the graph of f.
(i) Vertical asymptote is when denominator equals zero

$$
x+2=0 \quad x=-2
$$

(ii) Horizontal asymptote is limiting value as x gets large $\lim _{x \rightarrow \infty} \frac{10-5 x}{x+2}=\lim _{x \rightarrow \infty} \frac{-5 x}{x} \quad y=-5$
b) Find the coordinates of the intercepts of the graph of f with the axes.

$$
\begin{aligned}
& y \text {-intercept occurs when } x=0 \\
& y=\frac{10-5(0)}{0+2}=5 \quad(0,5) \\
& x \text {-intercept occurs when } y=0 \\
& \frac{10-5 x}{x+2}=0 \Rightarrow 10-5 x=0 \Rightarrow x=2 \quad(2,0)
\end{aligned}
$$

c) Sketch the graph of f.
© 2024 Exam Papers Practice
Include asymptotes and intercepts

Exam Papers Practice

2.4.2 Exponential \& Logarithmic Functions

Exponential Functions \& Graphs

What is an exponential function?

- An exponential function is defined by $f(x)=a^{x}, a>0$
- Its do main is the set of all real values
- Its range is the set of all positive real values
- An important exponential function is $f(x)=\mathrm{e}^{X}$
- Where e is the mathematic al constant 2.718...
- Anyexponential function can be written usinge
- $a^{x}=\mathrm{e}^{x \ln a}$
- This is given in the formula booklet

What are the key features of exponential graphs?

- The graphs have a y-intercept at $(0,1)$
- The graph will always pass through the point $(1, a)$
- The graphs do not have any roots
- The graphs have a horizontal asymptote at the x-axis: $y=0$
- For $a>1$ this is the limiting value when x tends to negative infinity
- For $0<a<1$ this is the limiting value when x tends to positive infinity
- The graphs do not have any minimum or maximum points

Exam
 Papers
 Copyright

© 2024 Exam Papers Practice

Page 6 of 16
For more help visit our website www.exampaperspractice.co.uk

Logarithmic Functions \& Graphs

What is a logarithmic function?

- Alogarithmic function is of the form $f(x)=\log _{a} x, x>0$
- Its domain is the set of all positive real values
- You can't take alogofzero or a negative number
- Its range is set of all real values
- $\log _{a} X$ and a^{X} are inverse functions
- Animportant logarithmic function is $f(x)=\ln x$
- This is the natural logarithmic function $\ln x \equiv \log _{\mathrm{e}} X$
- This is the inverse of e^{X}
- $\ln \mathrm{e}^{x}=x$ and $\mathrm{e}^{\ln x}=x$
- Any lo garithmic function can be written using In
- $\log _{a} x=\frac{\ln x}{\ln a}$ using the change of base formula

What are the key features of logarithmic graphs?

- The graphs do not have a y-intercept
- The graphs have one root at $(1,0)$
- The graphs will always pass through the point $(a, 1)$
- The graphs have a vertical asymptote at the y-axis: $\boldsymbol{X}=0$
- The graphs do not have any minimum or maximum points

Exam Papers Practice

Worked example

The function f is defined by $f(x)=\log _{5} x$ for $x>0$.
a) Write down the inverse of f. Give your answer in the form $\mathrm{e}^{g(x)}$.

Formula booklet Exponents \& logarithms | $a^{2}=b \Leftrightarrow x=\log _{a} b$ | $a>0, b>0, a \neq 1$ |
| :--- | :--- |

$$
x=\log _{5} y \Leftrightarrow y=5^{x}
$$

Formula booklet | |
| :--- |
| logarithmic functions |
| $a^{*}=\mathrm{e}^{m^{\prime \prime}}$ |

$$
f^{-1}(x)=e^{x \ln 5}
$$

b) Sketch the graphs of f and its inverse on the same set of axes.

$$
f \text { and } f^{-1} \text { are reflections in line } y=x
$$

2.4.3 Solving Equations

Solving Equations Analytically

Howcan Isolve equations analytically where the unknown appears only once?

- These equations can be solved by rearranging
- Forone-to-one functions you can just apply the inverse
- Addition and subtraction are inverses

$$
y=x+k \Leftrightarrow x=y-k
$$

- Multiplication and division are inverses
- $y=k x \Leftrightarrow x=\frac{y}{k}$
- Taking the reciprocal is a self-inverse
- $y=\frac{1}{x} \Leftrightarrow x=\frac{1}{y}$
- Odd powers and roots are inverses
- $y=x^{n} \Leftrightarrow x=\sqrt[n]{y}$
- $y=x^{n} \Leftrightarrow x=y^{\frac{1}{n}}$
- Exponentials and logarithms are inverses
- $y=a^{x} \Leftrightarrow x=\log _{a} y$
- $y=\mathrm{e}^{x} \Leftrightarrow x=\ln y$
- For many-to-o ne functions you will need to use yourknowledge of the functions to find the other solutions
Raven powerslead to positive and negative solutions
- $y=x^{n} \Leftrightarrow x= \pm \sqrt[n]{y}$
- Modulus functions lead to positive and negative solutions
- $y=|x| \Leftrightarrow x= \pm y$
- Trigonometric functions lead to infinite solutions using their symmetries
- $y=\sin x \Leftrightarrow x=2 k \pi+\sin ^{-1} y$ or $x=(1+2 k) \pi-\sin ^{-1} y$
- $y=\cos x \Leftrightarrow x=2 k \pi \pm \cos ^{-1} y$
- $y=\tan x \Leftrightarrow x=k \pi+\tan ^{-1} y$
- Take care when you apply many-to-one functions to both sides of an equation as this can create additional solutions which are incorrect
- Forexample:squaring both sides
- $x+1=3$ has one solution $x=2$
- $(x+1)^{2}=3^{2}$ has two solutions $x=2$ and $x=-4$
- Always check your solutions bysubstituting backinto the original equation

How can Isolve equations analytically where the unknown appears more than once?

- Sometimes it is possible to simplify expressions to make the unknownappear only once
- Collect allterms involving xon one side and try to simplify into one term
- Forexponents use
- $a^{f(x)} \times a^{g(x)}=a^{f(x)+g(x)}$
- $\frac{a^{f(x)}}{a^{g(x)}}=a^{f(x)-g(x)}$
- $\left(a^{f(x)}\right) g(x)=a^{f(x) \times g(x)}$
- $a^{f(x)}=\mathrm{e}^{f(x) \ln a}$
- Forlogarithms use
- $\log _{a} f(x)+\log _{a} g(x)=\log _{a}(f(x) \times g(x))$
- $\log _{a} f(x)-\log _{a} g(x)=\log _{a}\left(\frac{f(x)}{g(x)}\right)$
- $n \log _{a} f(x)=\log _{a}(f(x))^{n}$

How can I solve equations analytically when the equation can't be simplified?

- Sometimes it is not possible to simplify equations
- Most of these equations cannot be solved analytically
- A special case that can be solved is where the equation can be transformed into a quadratic using a substitution
- These will have three terms and involve the same type of function
- Identify the suitable substitution by considering which function is a square of ano ther
- For example: the following can be transformed into $2 y^{2}+3 y-4=0$
- $2 x^{4}+3 x^{2}-4=0$ using $y=x^{2}$
- $2 x+3 \sqrt{x}-4=0$ using $y=\sqrt{x}$
- $\frac{2}{x^{6}}+\frac{3}{x^{3}}-4=0$ using $y=\frac{1}{x^{3}}$
- $2 \mathrm{e}^{2 x}+3 \mathrm{e}^{x}-4=0$ using $y=\mathrm{e}^{x}$
- $2 \times 25^{x}+3 \times 5^{x}-4=0$ using $y=5^{x}$
- $2^{2 x+1}+3 \times 2^{x}-4=0$ using $y=2^{x}$
- $2\left(x^{3}-1\right)^{2}+3\left(x^{3}-1\right)-4=0$ using $y=x^{3}-1$
- To solve:
- Make the substitution $y=f(x)$
- Solve the quadratic equation $a y^{2}+b y+c=0$ to get $y_{1} \& y_{2}$
- Solve $f(x)=y_{1}$ and $f(x)=y_{2}$
- Note that some equations might havezero or several solutions

Can Idivide both sides of an equation by an expression?

- When dividing by an expression you must consider whether the expression could bezero
- Dividing by an expression that could be zero could result in you losing solutions to the original equation
- For example: $(x+1)(2 x-1)=3(x+1)$
- If you divide both sides by $(x+1)$ you get $2 x-1=3$ which gives $x=2$
- However $X=-1$ is also a solution to the original equation
- To ensure you do not lose solutions you can:
- Split the equationinto two equations
- One where the dividing expression equals zero: $\boldsymbol{X}+1=0$
- One where the equation has been divided bythe expression: $2 x-1=3$
- Make the equation equalzero and factorise
- $(x+1)(2 x-1)-3(x+1)=0$
- $(x+1)(2 x-1-3)=0$ which gives $(x+1)(2 x-4)=0$
- Set each factor equal to zero and solve: $x+1=0$ and $2 x-4=0$

- Exam Tip

- A common mistake that students make in exams is applying functions to each termrather than to eachside
- Forexample: Starting with the equation $\ln x+\ln (x-1)=5$ it would be incorrect to write $\mathrm{e}^{\ln x}+\mathrm{e}^{\ln (x-1)}=\mathrm{e}^{5}$ or $x+(x-1)=\mathrm{e}^{5}$
- Instead it would be correct to write $\mathrm{e}^{\ln x+\ln (x-1)}=\mathrm{e}^{5}$ and then simplify from there

Worked example

Exam Papers Practice
Find the exact solutions for the following equations:
a) $5-2 \log _{4} x=0$.

$$
\begin{aligned}
& \text { Rearrange using inverse functions } \\
& \left.\begin{array}{l}
5-2 \log _{4} x=0 \\
2 \log _{4} x=5 \\
\log _{4} x=\frac{5}{2} \\
x=4^{5 / 2}
\end{array}\right) y=x-k \Leftrightarrow x=y+k \\
& x=\log _{a} x \Leftrightarrow x=a^{y} \\
& \left.x=(\sqrt{4})^{5}\right) a^{\frac{m}{n}}=(\sqrt[n]{a})^{m} \\
& x=32
\end{aligned}
$$

b)

$$
\begin{aligned}
x= & \sqrt{x+2} . \\
& \text { Square both sides (Many-to-one function) } \\
& x^{2}=x+2 \Rightarrow x^{2}-x-2=0 \\
& (x-2)(x+1)=0 \Rightarrow x=2 \text { or } x=-1
\end{aligned}
$$

Check whether each solution is valid

$$
x=2: \quad L H S=2 \quad R H S=\sqrt{2+2}=2
$$

$$
x=-1: L H S=-1 \quad \text { RUS }=\sqrt{-1+2}=1 x
$$

© 2024 Exam Pap

$$
x=2
$$

c) $\quad \mathrm{e}^{2 x}-4 \mathrm{e}^{x}-5=0$.

$$
\begin{aligned}
& \text { Notice } e^{2 x}=\left(e^{x}\right)^{2}, \text { let } y=e^{x} \\
& y^{2}-4 y-5=0 \Rightarrow(y+1)(y-5)=0 \\
& y=-1 \text { or } y=5 \\
& \text { Solve using } y=e^{x} \\
& e^{x}=-1 \quad \text { has no solutions as } e^{x}>0 \\
& e^{x}=5 \quad \therefore x=\ln 5 \\
& x=\ln 5
\end{aligned}
$$

Solving Equations Graphically

How can Isolve equations graphically?

- To solve $f(x)=g(x)$
- One method is to draw the graphs $y=f(x)$ and $y=g(x)$
- The solutions are the \boldsymbol{x}-coordinates of the points of intersection
- Anothermethod is to draw the graph $y=f(x)-g(x)$ or $y=g(x)-f(x)$
- The solutions are the roots (zeros) of this graph
- This method is sometimes quicker as it involves drawing only o ne graph

Why do I need to solve equations graphically?

- Some equations cannot be solved analytically
- Polynomials of degree higher than 4
- $X^{5}-x+1=0$
- Equations involving different types of functions
- $\mathrm{e}^{x}=x^{2}$

O Exam Tip

- On a calculator paperyou are allowed to solve equations using your GDC unless the question asks for an algebraic method
- If your answer needs to be an exact value then you might need to solve analytic ally to get the exact value

Worked example

a) Sketch the graph $y=e^{x}-x^{2}$

Sketch using GDC

b) Hence find the solution to $\mathrm{e}^{X}=X^{2}$.

$$
\begin{aligned}
& e^{x}=x^{2} \text { when } e^{x}-x^{2}=0 \\
& \text { Solution is the } x \text {-intercept of } y=e^{x}-x^{2} \\
& x=-0.703(3 s f)
\end{aligned}
$$

2.4.4 Modelling with Functions

Modelling with Functions

What is a mathematical model?

- A mathematical model simplifies a real-world situation so it can be described using mathematics
- The model can then be used to make predictions
- Assumptions about the situation are made in orderto simplify the mathematics
- Models can be refined (improved) if furtherinformation is available or if the model is compared to real-world data

How do Iset up the model?

- The question could:
- give you the equation of the model
- tellyouabout the relationship
- It might say the relationship is linear, quadratic, etc
- askyouto suggest a suitable model
- Use yourknowledge of eachmodel
- E.g. if it is compound interest then an exponential model is the most appropriate
- You may have to determine a reasonable do main
- Considerreal-life context
- E.g.if dealing with ho urs in a day then
- E.g. if dealing with physical quantities (such as length) then
- Consider the possible ranges
- If the outcome cannot be negative then you want to choose a domain which corresponds to a range with no negative values
- Sketching the graph is helpful to determine a suitable do main

Which models might Ineed to use?

- You could be given anymodel and be expected to use it
- Commonmodels include:
- Linear
- Arithmetic sequences
- Linearregression
- Quadratic
- Projectile motion
- The height of a cable supporting a bridge
- Profit
- Exponential
- Geometric sequences
- Exponential growth and decay
- Compound interest
- Logarithmic
- Richter scale forthe magnitude of earthquakes
- Rational
- Temperature of a cup of coffee
- Trigonometric
- The depth of a tide

Howdoluse a model?

- You can use a model by substituting in values for the variable to estimate out puts
- For example: Let $h(t)$ be the height of a football t seconds after being kicked
- $h(3)$ will be an estimate for the height of the ball 3 seconds after being kicked
- Given an output you can form an equation with the model to estimate the input
- For example: Let $P(n)$ be the profit made by selling nitems
- Solving $P(n)=100$ will give you an estimate for the number of items needing to be sold to make a profit of 100
- If your variable is time then substituting $t=0$ will give you the initial value according to the model
- Fully understand the units for the variables
- If the units of P are measured in thousand dollars then $P=3$ represents $\$ 3000$
- Look out forkey words such as:
- Initially
- Minimum/maximum
- Limiting value

What do Ido if some of the parameters are unknown?

- A general method is to form equations bysubstituting in given values
- You can form multiple equations and solve them simultaneously using your GDC
- This method works for all models
- The initial value is the value of the function when the variable is 0
- This is normally one of the parameters in the equation of the model

The temperature, $T^{\circ} \mathrm{C}$, of a cup of coffee is monitored. Initially the temperature is $80^{\circ} \mathrm{C}$ and 5 minutes laterit is $40^{\circ} \mathrm{C}$. It is suggested that the temperature follows the model:

$$
T(t)=A \mathrm{e}^{k t}+16, t \geq 0
$$

where t is the time, in minutes, after the coffee has been made.
a) State the value of A.

$$
\begin{aligned}
& \text { Initially temperature is } 80^{\circ} \mathrm{C} \\
& T(0)=80 \\
& A e^{-k(0)}+16=80 \\
& A+16=80 \\
& A=64
\end{aligned}
$$

b) Find the exact value of \boldsymbol{k}.

$$
\begin{aligned}
& t=5, T=40 \\
& 40=64 e^{5 k}+16 \\
& 64 e^{5 k}=24 \\
& e^{5 k}=\frac{3}{8}
\end{aligned}
$$

$$
5 k=\ln \frac{3}{8}
$$

$$
k=\frac{1}{5} \ln \frac{3}{8}
$$

© 2024 Exam Papers Practice

c) Find the time taken for the temperature of the coffee to reach $30^{\circ} \mathrm{C}$.

$$
\text { Find } t \text { such that } T(t)=30
$$

$30=64 e^{k t}+16$ Leave as k until the end to save $64 e^{k t}=14 \quad$ writing $\frac{1}{5} \ln \frac{3}{8}$ each time

$$
\begin{aligned}
& e^{k t}=\frac{7}{32} \\
& k t=\ln \frac{7}{32} \\
& t=\frac{\ln \frac{7}{32}}{k}=\frac{\ln \frac{7}{32}}{\frac{1}{5} \ln \frac{3}{8}}=7.7476 .
\end{aligned}
$$

7.75 minutes (3sf)

