铛
 EXAM PAPERS PRACTICE

Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme
Suitable for all boards
Designed to test your ability and thoroughly prepare you

2.4 Functions Toolkit

Exam Papers Practice

2.4.1 Composite \& Inverse Functions

Composite Functions

What is a composite function?

- A composite function is where a function is applied to anotherfunction
- Acomposite functioncan be denoted
- $(f \circ g)(x)$
- $f g(x)$
- $f(g(x))$
- The ordermatters
- $(f \circ g)(x)$ means:
- First apply g to x to get $g(x)$
- Then apply f to the previous output to get $f(g(x))$
- Always start with the function closest to the variable
- $(f \circ g)(x)$ is not usually equal to $(g \circ f)(x)$

How do Ifind the domain and range of a composite function?

- The domain of $f \circ g$ is the set of values of X...
- which are a subset of the domain of g
- which maps g to a value that is in the domain of f
- The range of $f \circ g$ is the set of values of \boldsymbol{X}...
- which are a subset of the range of f
- found by applying f to the range of g
- To find the domain and range of $f \circ g$
- First find the range of g
- Restrict these values to the values that are within the do main of \boldsymbol{f}
- The domain is the set of values that produce the restricted range of g
- The range is the set of values that are produced using the restricted range of g as the domain for f
- For example: let $f(x)=2 x+1,-5 \leq x \leq 5$ and $g(x)=\sqrt{x}, 1 \leq x \leq 49$
- The range of g is $1 \leq g(x) \leq 7$
- Restricting this to fit the domain of fresults in $1 \leq g(x) \leq 5$
- The domain of $f \circ g$ is therefore $1 \leq x \leq 25$
- These are the values of x which map to $1 \leq g(x) \leq 5$
- The range of $f \circ g$ is therefore $3 \leq(f \circ g)(x) \leq 11$

Exam Papers Practice

- These are the values which f maps $1 \leq g(x) \leq 5$ to

(-) Exam Tip

- Make sure you know what your GDC is capable of with regard to functions
- You maybe able to store individual functions and find composite functions and their values for particular inputs
- You maybe able to graph composite functions directly and so deduce their domain and range from the graph
- The link between the domains and ranges of a function and its inverse can act as a check for your solution
- $f f(x)$ is not the same as $[f(x)]^{2}$

Exam Papers Practice
© 2024 Exam Papers Practice

Exam Papers Practice

Worked example

Given $f(x)=\sqrt{x+4}$ and $g(x)=3+2 x$:
a) Write down the value of $(g \circ f)(12)$.

First apply function closest to input $(g \circ f)(12)=g(f(12))$
$f(12)=\sqrt{12+4}=\sqrt{16}=4$
$g(4)=3+2(4)=11$
$(g \circ f)(12)=11$
b) Write down an expression for $(f \circ g)(x)$.

First apply function closest to input $(f \circ g)(x)=f(g(x))$
$=f(3+2 x)$
$=\sqrt{3+2 x+4}$

- 2

$$
(f \circ g)(x)=\sqrt{7+2 x}
$$

© 2024 Exam Papers Practice
c) Write down an expression for $(g \circ g)(x)$.

$$
\begin{aligned}
(g \circ g)(x) & =g(g(x)) \\
& =g(3+2 x) \\
& =3+2(3+2 x) \\
& =3+6+4 x \\
(g \circ g)(x) & =9+4 x
\end{aligned}
$$

Inverse Functions

What is an inverse function?

- Only one-to-one functions have inverses
- A function has an inverse if its graph passes the horizont al line test
- Anyhorizont al line will intersect with the graph at most once
- The identity function id maps each value to itself
- $\operatorname{id}(x)=x$
- If $f \circ g$ and $g \circ f$ have the same effect as the identity function then f and g are inverses
- Given a function $f(x)$ we denote the inverse function as $f^{-1}(x)$
- An inverse function reverses the effect of a function
- $f(2)=5$ means $f^{-1}(5)=2$
- Inverse functions are used to solve equations
- The solution of $f(x)=5$ is $x=f^{-1}(5)$
- A composite function made of f and f^{-1} has the same effect as the identity function
- $\left(f \circ f^{-1}\right)(x)=\left(f^{-1} \circ f\right)(x)=x$

INVERSE FUNCTIONS

© 2024 Exam Papers Practice

What are the connections between a function and its inverse function?

- The domain of a function becomes the range of its inverse
- The range of a function becomes the do main of its inverse
- The graph of $y=f^{-1}(x)$ is a reflection of the graph $y=f(x)$ in the line $y=x$
- Therefore solutions to $f(x)=x$ or $f^{-1}(x)=x$ will also be solutions to $f(x)=f^{-1}(x)$
- There could be other solutions to $f(x)=f^{-1}(x)$ that don't lie on the line $y=x$

How do Ifind the inverse of a function?

- STEP 1: Swap the x and y in $y=f(x)$
- If $y=f^{-1}(x)$ then $x=f(y)$
- STEP 2: Rearrange $x=f(y)$ to make y the subject
- Note this can be done in anyorder
- Rearrange $y=f(x)$ to make X the subject
- Swap X and \boldsymbol{y}

Can many-to-one functions ever have inverses?

- Youcan restrict the domain of a many-to-one function so that it has an inverse
- Choose a subset of the domain where the function is one-to-one
- The inverse will be determined by the restricted domain
- Note that a many-to-one function can only have an inverse if its do main is restricted first
- For quadratics - use the vertex as the upper or lowerbound for the restricted domain
- For $f(x)=x^{2}$ restrict the domainso 0 is either the maximum or minimum value
- For example: $x \geq 0$ or $X \leq 0$
- For $f(x)=a(x-h)^{2}+k$ restrict the do main so h is either the maximum or minimum value
- For example: $x \geq h$ or $x \leq h$
- Fortrigo no metric functions - use part of a cycle as the restricted do main
- For $f(x)=\sin x$ restrict the do main to half a cycle between a maximum and a minimum
- For example: $-\frac{\pi}{2} \leq x \leq \frac{\pi}{2}$
- For $f(x)=\cos X$ restrict the domain to half a cycle between maximum and a minimum
- For example: $0 \leq x \leq \pi$
- For $f(x)=\tan X$ restrict the domain to one cycle between two asymptotes
- For example: $-\frac{\pi}{2}<x<\frac{\pi}{2}$

How do Ifind the inverse function after restricting the domain?

- The range of the inverse is the same as the restricted domain of the original function
- The inverse function is determined by the restricted domain
- Restricting the do main differently will change the inverse function
- Use the range of the inverse to help find the inverse function
- Restricting the do main of $f(x)=x^{2}$ to $x \geq 0$ means the range of the inverse is $f^{-1}(x) \geq 0$
- Therefore $f^{-1}(x)=\sqrt{X}$
- Restricting the do main of $f(x)=x^{2}$ to $x \leq 0$ means the range of the inverse is $f^{-1}(x) \leq 0$
- Therefore $f^{-1}(x)=-\sqrt{x}$

(9) Exam Tip

- Remember that an inverse function is a reflection of the original function in the line $y=X$
- Use your GDC to plot the function and its inverse on the same graph to visually check this
- $f^{-1}(x)$ is not the same as $\frac{1}{f(x)}$

Worked example

The function $f(x)=(x-2)^{2}+5, x \leq m$ has an inverse.
a) Write down the largest possible value of m.

Sketch $y=f(x)$
The graph is one-to-one for $x \leq 2$

b) Find the inverse of $f(x)$.

$$
\begin{aligned}
& \text { Let } y=f^{-1}(x) \text { and rearrange } x=f(y) \\
& x=(y-2)^{2}+5 \\
& x-5=(y-2)^{2} \\
& \pm \sqrt{x-5}=y-2 \\
& 2 \pm \sqrt{x-5}=y \\
& \text { Range of } f^{-1} \text { is the domain of } f \\
& f^{-1}(x) \leqslant 2 \quad \therefore y=2-\sqrt{x-5} \\
& f^{-1}(x)=2-\sqrt{x-5}
\end{aligned}
$$

c) Find the domain of $f^{-1}(x)$.
© 2024 Exam Papers
Domain of f^{-1} is the range of f
Sketch $y=f(x)$ to
see range
For $x \leqslant 2, f(x) \geqslant 5$

Domain of $f^{-1}: x \geqslant 5$
d) Find the value of k such that $f(k)=9$.

$$
\begin{aligned}
& \text { Use inverse } f(a)=b \Leftrightarrow a=f^{-1}(b) \\
& k=f^{-1}(9)=2-\sqrt{9-5} \\
& k=0
\end{aligned}
$$

