

Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme

Suitable for all boards

Designed to test your ability and thoroughly prepare you

2.4 Functions Toolkit

IB Maths - Revision Notes

2.4.1 Composite & Inverse Functions

Composite Functions

What is a composite function?

- A **composite function** is where a function is applied to another function
- A composite function can be denoted
 - $(f \circ g)(x)$
 - fg(x)
 - f(g(x))
- The order matters
 - $(f \circ g)(x)$ means:
 - First apply g to x to get g(x)
 - Then apply f to the previous output to get f(g(x))
 - Always start with the function closest to the variable
 - $(f \circ g)(x)$ is not usually equal to $(g \circ f)(x)$

How do I find the domain and range of a composite function?

- The domain of $f \circ g$ is the set of values of x_{\cdots}
 - which are a subset of the domain of g
 - which maps g to a value that is in the domain of f
- The range of $f \circ g$ is the set of values of X...
 - which are a subset of the range of f
 - found by applying f to the range of g
- Copyright find the **domain** and **range** of $f \circ g$
- © 2024 Example First find the range of g
 - Restrict these values to the values that are within the domain of f
 - The **domain** is the set of values that **produce the restricted range** of g
 - The range is the set of values that are produced using the restricted range of g as the domain for f

eľ

s Practice

- For example: let f(x) = 2x + 1, $-5 \le x \le 5$ and $g(x) = \sqrt{x}$, $1 \le x \le 49$
 - The range of g is $1 \le g(x) \le 7$
 - **Restricting** this to fit the **domain of** fresults in $1 \le g(x) \le 5$
 - The **domain** of $f \circ g$ is therefore $1 \le x \le 25$
 - These are the values of x which map to $1 \le g(x) \le 5$
 - The range of $f \circ g$ is therefore $3 \leq (f \circ g)(x) \leq 11$

• These are the values which f maps $1 \le g(x) \le 5$ to

💽 Exam Tip

- Make sure you know what your GDC is capable of with regard to functions
 - You may be able to store individual functions and find composite functions and their values for particular inputs
 - You may be able to graph composite functions directly and so deduce their domain and range from the graph
- The link between the domains and ranges of a function and its inverse can act as a check for your solution
- ff(x) is not the same as $[f(x)]^2$

Exam Papers Practice

© 2024 Exam Papers Practice

Worked example

Given
$$f(x) = \sqrt{x+4}$$
 and $g(x) = 3+2x$:
a) Write down the value of $(g \circ f)(12)$.
First apply function closest to input
 $(g \circ f)(12) = g(f(12))$
 $f(12) = \sqrt{12+4} = \sqrt{16} = 4$
 $g(4) = 3 + 2(4) = 11$
($g \circ f)(12) = 11$
b) Write down an expression for $(f \circ g)(x)$.
First apply function closest to input
 $(f \circ g)(x) = f(g(x))$
 $= f(3+2x)$
 $= \sqrt{3+2x+4}$
Practice

The provided matrix of the provided matrix $(g \circ g)(x)$. C)

$$(g \circ g)(x) = g(g(x))$$

= $g(3 + 2x)$
= $3 + 2(3 + 2x)$
= $3 + 6 + 4x$
 $(g \circ g)(x) = 9 + 4x$

Inverse Functions

What is an inverse function?

- Only one-to-one functions have inverses
- A function has an inverse if its graph passes the horizontal line test
 Any horizontal line will intersect with the graph at most once
- The identity function id maps each value to itself

$$\bullet \operatorname{id}(x) = x$$

- If $f \circ g$ and $g \circ f$ have the same effect as the identity function then f and g are inverses
- Given a function f(x) we denote the inverse function as $f^{-1}(x)$
- An inverse function reverses the effect of a function

•
$$f(2) = 5$$
 means $f^{-1}(5) = 2$

- Inverse functions are used to solve equations
 - The solution of f(x) = 5 is $x = f^{-1}(5)$
- A composite function made of f and f^{-1} has the same effect as the identity function
 - $(f \circ f^{-1})(x) = (f^{-1} \circ f)(x) = x$

f⁻¹(x)

Т

P U

Copyright © 2024 Exam Papers Practice

What are the connections between a function and its inverse function?

• The domain of a function becomes the range of its inverse

Ν

P

- The range of a function becomes the domain of its inverse
- The graph of $y = f^{-1}(x)$ is a **reflection** of the graph y = f(x) in the line y = x
 - Therefore solutions to f(x) = x or $f^{-1}(x) = x$ will also be solutions to $f(x) = f^{-1}(x)$
 - There could be other solutions to $f(x) = f^{-1}(x)$ that don't lie on the line y = x

How do I find the inverse of a function?

• STEP 1: Swap the x and y in y = f(x)

• If
$$y = f^{-1}(x)$$
 then $x = f(y)$

- STEP 2: Rearrange x = f(y) to make y the subject
- Note this can be done in any order
 - Rearrange y = f(x) to make x the subject

Copyright Swap X and Y

© 2024 Exam Papers Practice

Can many-to-one functions ever have inverses?

- You can **restrict the domain** of a many-to-one function so that it has an inverse
 - Choose a subset of the domain where the function is one-to-one
 - The inverse will be determined by the restricted domain
 - Note that a many-to-one function can **only** have an inverse if its domain is restricted first

s Practice

- For quadratics use the vertex as the upper or lower bound for the restricted domain
 - For $f(x) = x^2$ restrict the domain so 0 is either the maximum or minimum value
 - For example: $X \ge 0$ or $X \le 0$
 - For $f(x) = a(x h)^2 + k$ restrict the domain so h is either the maximum or minimum value
 - For example: $X \ge h$ or $X \le h$
- For trigonometric functions use part of a cycle as the restricted domain
 - For $f(x) = \sin x$ restrict the domain to half a cycle between a maximum and a minimum

• For example:
$$-\frac{\pi}{2} \le x \le \frac{\pi}{2}$$

• For $f(x) = \cos x$ restrict the domain to half a cycle between maximum and a minimum

- For example: $0 \le x \le \pi$
- For $f(x) = \tan x$ restrict the domain to one cycle between two asymptotes

• For example:
$$-\frac{\pi}{2} < x < \frac{\pi}{2}$$

How do I find the inverse function after restricting the domain?

- The range of the inverse is the same as the restricted domain of the original function
- The inverse function is determined by the restricted domain
 - Restricting the domain differently will change the inverse function
- Use the range of the inverse to help find the inverse function
 - Restricting the domain of $f(x) = x^2$ to $x \ge 0$ means the range of the inverse is $f^{-1}(x) \ge 0$
 - Therefore $f^{-1}(x) = \sqrt{x}$
 - Restricting the domain of $f(x) = x^2$ to $x \le 0$ means the range of the inverse is $f^{-1}(x) \le 0$

• Therefore
$$f^{-1}(x) = -\sqrt{x}$$

 $f^{-1}(x)$ is not the same as

💽 Exam Tip

- Remember that an inverse function is a reflection of the original function in the line y = x
 - Use your GDC to plot the function and its inverse on the same graph to visually check this

ers Pract

Copyright © 2024 Exam Papers Practice

Worked example

The function $f(x) = (x-2)^2 + 5$, $x \le m$ has an inverse.

a) Write down the largest possible value of *m*.

b) Find the inverse of f(x).

Use inverse $f(a) = b \iff q = f^{-1}(b)$ $k = f^{-1}(q) = 2 - \sqrt{9 - 5}$ k = 0Page 7 of 7

Fage 7 of 7 For more help visit our website www.exampaperspractice.co.uk