

2.3 Functions Toolkit

Mark Schemes

Exam Papers Practice

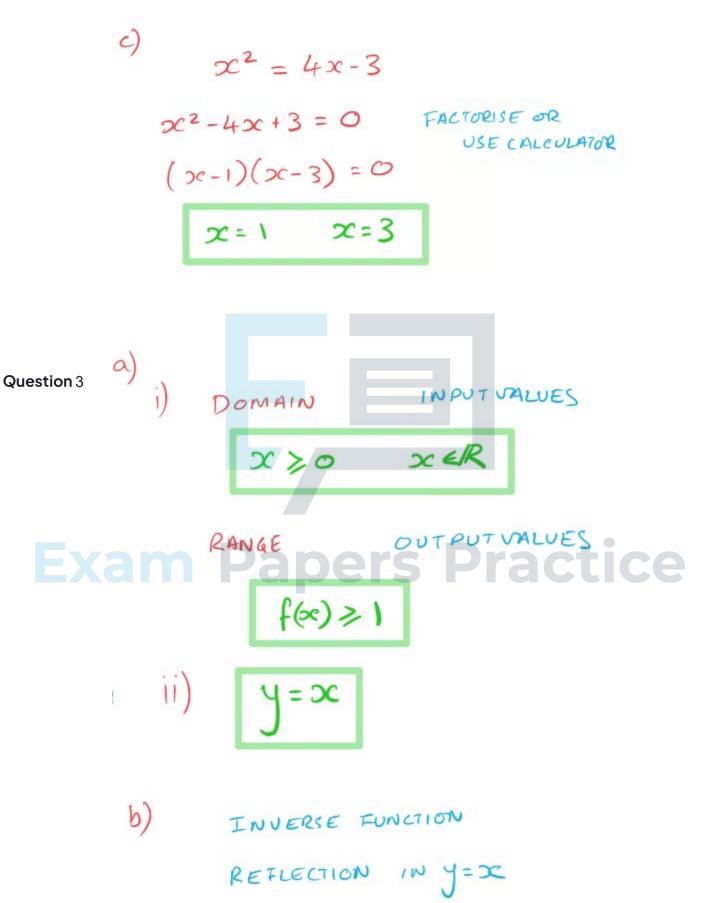
To be used by all students preparing for DP IB Maths AA SL Students of other boards may also find this useful

Question 1
a) Sub
$$(4x - 10)$$
 into $g(x)$.
 $(g \circ f)(x) = \frac{(4x - 10) + 8}{2}$
 $(g \circ f)(x) = \frac{4x - 2}{2}$
 $(g \circ f)(x) = \frac{4x - 1}{2}$
b) Set $(g \circ f)(x) = 2x - 1$
b) Set $(g \circ f)(x) = 27$ and solve for x.
 $2x - 1 = 27$
 $x = 14$
c) Sub $\frac{x + 8}{2}$ into $f(x)$.
Exam $(f \circ g)(x) = \frac{y^2(x + 8)}{2} = 10$ actice
 $(f \circ g)(x) = 2(x + 8) - 10$
 $(f \circ g)(x) = 2x + 16 - 10$
 $(f \circ g)(x) = 2x + 6$
d) Set $(f \circ g)(x) = 44$ and solve for x.
 $2x + 6 = 44$
 $x = 19$
 $\therefore b = 19$

For more help visit our website www.exampaperspractice.co.uk

6)

a) x2>0 ALWAYS POSITIVE


RANGE = OUTPUT VALUES

i) $f \circ g(x)$ $(4x - 3)^2$ $f \circ g(x) = 16x^2 - 24x + 9$

Examine g(x) ers substitute f(x) ce $4(x^2) - 3$ $g_0f(x) = 4x^2 - 3$

a) i) fog(x) SUBSTITUTE g(x) INTO f(x) $\frac{1}{2}\left(4\left(\frac{1}{2}x + \frac{3}{4}\right) - 3\right)$ ½(2 x +3 −3) $fog(x) = \infty$ ii) gof(x) SUBSTITUTE f(x)INTO g(x) $\frac{1}{2}\left(\frac{1}{2}(4x-3)\right)+\frac{3}{4}$ 1 (Kx-3) + 3 4 (Kx-3) + 3 $2c - \frac{3}{4} + \frac{3}{4}$ gof(x) = xExam Papers Practice f(x) AND g(x) ARE INVERSE FUNCTIONS OF EACHOTHER f'(x) = 0.5x + 0.75DOMAIN DEER RANGE XER

.

. . .

Question

5 a)
$$Sub = \frac{5}{2}$$
 into $f(x)$.
 $f(\frac{5}{2}) = 54(\frac{5}{2}) - 18$
 $f(\frac{5}{2}) = 122$

<

b) Use the domain of
$$f(x)$$
 to find its range.
 $f(-2) = 54(-2) - 13$
 $f(-2) = -121$
 $f(20) = 54(20) - 13$
 $f(20) = 1067$
Range is $\{y_1 - 12i < y < 1067\}$

Exam Papers Practice

c) Set
$$y = f(x)$$
.
 $y = 54x - 13$
Swap x and y.
 $x = 54y - 13$
Rearrange into $y = mx + c$.
 $54y - 13 = xc$
 $54y = xc + 13$
 $y = \frac{xc + 13}{54}$
 $y = \frac{xc + 13}{54}$
 $y = \frac{1}{54}x + \frac{13}{54}$
Xam Papers Practice
d) The domain of $f(x)$ is the range of $f'(x)$.

Range 15 {y1-2 < y < 20}

a)i) Sub
$$x = 2$$
 into $f(x)$.
 $f(2) = -6(2) - 3$
 $f(2) = -15$

ii) Set f(x) = 15 and rearrange for x. f(x) = 15 -6x - 3 = 15 -6x = 18 x = -3(-6)

b) Use the domain of f(x) to find its range. f(-s) = -6(-s) - 3Exating the practice of the field of th

a) The graph of f is a parabola.
Axis of symmetry

$$x = -\frac{b}{2a}$$
 (in formula booklet)
Sub $b = 10$ and $a = 3$ into formula.
 $x = -\frac{10^5}{2(3)}$ $\therefore x = -\frac{5}{3}$
Sub $x = -\frac{5}{3}$ into $f(x)$.
 $f(-\frac{5}{3}) = 3(-\frac{5}{3})^2 + 10(-\frac{5}{3}) + 7$
 $f(-\frac{5}{3}) = 3(\frac{25}{9}) - \frac{50}{3} + 7$
 $f(-\frac{5}{3}) = -\frac{150}{79} + \frac{63}{7}$
 $f(-\frac{5}{3}) = -\frac{150}{79} + \frac{63}{7}$

b)
$$(g \cdot f)(x) = 3x^2 + 10x + 7 + d$$

 $(g \cdot f)(x)$ is a quadratic equation, with
 $a = 3$ $b = 10$ $c = 7 + d$
Discriminant formula.
 $A = b^2 - 4ac$ (in formula booklet)
 $A = (10)^2 - 4(5)(7 + d)$
 $A = 100 - (84 + 12d)$
 $A = 16 - 12d$
 $(g \cdot f)(x)$ is positive for all x when $A < 0$.
 $16 - 12d < 0$
 $d > \frac{4}{3}$
Example papers Practice
(a) x - intercept is when $g(x) = 0$.
 $x - intercept$ is when $g(x) = 0$.
 $x - intercept$ is when $x = 0$.
 $y - intercept$ is when $x = 0$.
 $y - intercept$ is when $x = 0$.

b)i) Sub
$$x = -5$$
 into $g(x)$.
 $g(-5) = \sqrt{4 - (-5)}$
 $g(-5) = \sqrt{9}$
 $g(-5) = 3$

ii) Set $g(x) = \frac{1}{2}$ and rearrange for x. $g(x) = \frac{1}{2}$ $\sqrt{4-x} = \frac{1}{2}$ $4-x = \frac{1}{4}$ x = 3.75

Excit g(x) is undefined for 2 74 ctice Domain is {x1 x ≤ 4} i) g(x) = 0 when x = 4. Range is {y1 y>0}