铛
 EXAM PAPERS PRACTICE

Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme
Suitable for all boards
Designed to test your ability and thoroughly prepare you

2.3 Modelling with Functions

2.3.1 Linear Models

Linear Models

What are the parameters of a linear model?

- A linear model is of the form $f(x)=m x+c$
- The m represents the rate of change of the function
- This is the amount the function increases/decreases when xincreases by 1
- If the function is increasing m is positive
- If the function is decreasing m is negative
- When the model is represented as a graph this is the gradient of the line
- The crepresents the value of the function when $x=0$
- This is the value of the function when the independent variable is not present
- This is usually referred to as the initial value
- When the model is represented as a graph this is the \mathbf{y}-intercept of the line

What can be modelled as a linear model?

- If the graph of the data resembles a straight line
- Anything with a constant rate of change
- $C(d)$ is the taxi charge for a journey of $d \mathrm{~km}$
- $B(m)$ is the monthly mo bile phone bill when m minutes have been used
- $R(d)$ is the rental fee for a carused for d days
- $d(t)$ is the distance travelled bya car moving at a constant speed for t seconds

What are possible limitations of a linear model?

- Linearmodels continuously increase (ordecrease) at the same rate
- In real-life this might not be the case
- The function might reach a maximum (orminimum)
- If the value of m is negative then for some inputs the function will predict negative values
- In some real-life situations negative values will not make sense
- To overcome this you can decide on an appropriate domain so that the outputs are never negative

O Exam Tip

- Make sure that you are equally confident in working with linear models both algebraically and graphically as it may be easierusing one method over the otherwhen tackling a particular exam question

Worked example

The total cost, C, in New Zealand dollars (NZD), of a premium gym membership at FitFirst can be modelled by the function

$$
C=14.95 t+30, t \geq 0
$$

where t is the time in weeks.
a) Calculate the cost of the gym membership for 20 weeks.

b) Find the number of weeks it takes for the to cal cost to exceed 1500 NZD.
Substitute $C=1500$

$$
1500=14.95 t+30
$$

$$
14.95 t=1470
$$

$$
t=\frac{1470}{14.95}=98.327 .
$$

Eta
© 2024 Exam Paper
Round
up to the next integer

$$
99 \text { weeks }
$$

c) Under new management, FitFirst changes the initial payment to 20 NZD and the weekly cost to 19.25 NZD. Write the new cost function after these changes have been.
$C(t)=m t+c$
m is the constant rate per week $m=19.25$
c is the initial cost $c=20$
$C(t)=19.25 t+20$

2.3.2 Quadratic \& Cubic Models

Quadratic Models

What are the parameters of a quadratic model?

- A quadratic model is of the form $f(x)=a x^{2}+b x+c$
- The c represents the value of the function when $x=0$
- This is the value of the function when the independent variable is not present
- This is usually referred to as the initial value
- The ahas the biggest impact on the rate of change of the function
- If a has a large absolute value then the rate of change varies rapidly
- If a has a small absolute value then the rate of change varies slowly
- The maximum (or minimum) of the function occurs when $x=-\frac{b}{2 a}$
- This is given in the formula booklet as the axis of symmetry

What can be modelled as a quadratic model?

- If the graph of the dataresembles a U or \cap shape
- These can be used if the graph has a single maximum orminimum
- $H(t)$ is the vertic al height of a fo otball t seconds after being kicked
- $A(x)$ is the area of rectangle of length $x \mathrm{~cm}$ that can be made with a 20 cm length of string

What are possible limitations of a quadratic model?

- A quadratic has either a maximum or a minimum but not both
- This means one end is unbounded
- In real-life this might not be the case
- The function might have both a maximum and a minimum
- To overcome this you can decide on an appropriate domain so that the outputs are within a range
- Quadratic graphs are symmetrical
- This might not be the case in real-life

(-) Exam Tip

- Read and re-read the question carefully, try to get involved in the context of the question!
- Imagine what happens to a stone as you throw it from a cliff, what would the path look like?
- What would it be like to manage a toy factory, would you expect profit to rise orfall as you increase the price of the toy?
- Sketch a graph of the function being used as the model, use your GDC to help you
- If you are completelystuck try "doing something" with the quadratic function - sketch it, factorise it, solve it

Worked example

A company sells unicorn toys. The profit, $£ P$, made byselling one unicorn toycan be modelled by the function

$$
P(x)=\frac{1}{10}\left(-x^{2}+20 x-50\right)
$$

where X is the selling price of the toy.
Find the selling price which maximises profit. State the maximum profit.

Cubic Models

What are the parameters of a cubic model?

- A cubic model is of the form $f(x)=a x^{3}+b x^{2}+c x+d$
- The drepresents the value of the function when $x=0$
- This is the value of the function when the independent variable is not present
- This is usually referred to as the initial value
- The ahas the biggest impact on the rate of change of the function
- If a has a large absolute value then the rate of change varies rapidly
- If a has a small absolute value then the rate of change varies slowly

What can be modelled as a cubic model?

- If the graph of the data has exactly one maximum and one minimum within an interval
- If the graph is monotonic with no maximum or minimum
- $D(t)$ is the vertic al distance below starting point of a bungee jumper t seconds afterjumping
- $V(x)$ is the volume of a cuboid of length $x c m$ that can be made with a $200 \mathrm{~cm}^{2}$ of card board

What are possible limitations of a cubic model?

- Cubic graphs have no global maximum or minimum
- This means the function is unbounded
- In real-life this might not be the case
- The function might have a maximum orminimum
- To overcome this you can decide on an appropriate domain so that the outputs are within a range

O. Exam Tip

- Read and re-read the question carefully, try to get involved in the context of the question!
- Always sketch the graph using your GDC to help
- Pay particular attention to the domain of the question
- If the domain is given, make sure that you fo cus only on that section when you sketch the graph
- If the domain is not given, think about whether ornot it needs to be restricted based on the context of the question, e.g.can time be negative?

Worked example

The vertic al height of a child above the ground, h metres, as they go do wo a water slide can be modelled by the function

$$
h(t)=\frac{4}{7}\left(35-12 t+6 t^{2}-t^{3}\right)
$$

where t is the time in seconds after the child enters the slide.
a) State the vertical height of the slide.

b) Given that the child reaches the ground at the bottom of the slide, find the do main of the function.


```
0}\leqt\leq
```


2.3.3 Exponential Models

Exponential Models

What are the parameters of an exponential model?

- An exponential model is of the form
- $f(x)=k a^{x}+c$ or $f(x)=k a^{-x}+c$ for $a>0$
- $f(x)=k \mathrm{e}^{i x}+c$
- Where e is the mathematical constant 2.718...
- The crepresents the boundary forthe function
- It cannever be this value
- The aorrdescribes the rate of growthordecay
- The bigger the value of a orthe absolute value of r the faster the function increases/decreases

What can bemodelled as an exponential model?

- Exponential growth ordecay
- Exponential growth is represented by
- a^{X} where $a>1$
- a^{-x} where $0<a<1$
- $\mathrm{e}^{r X}$ where $r>0$
- Exponential decay is represented by
- a^{X} where $0<a<1$
- a^{-x} where $a>1$
- $\mathrm{e}^{r X}$ where $r<0$
- They can be used when there a constant percentage increase or decrease
- Such as functions generated by geometric sequences
- Examples include:
- $V(t)$ is the value of car after t years
- $S(t)$ is the amount in a savings account after tyears
- $B(t)$ is the amount of bacteria on a surface after t seconds
- $\pi(t)$ is the temperature of a kettle t minutes after being boiled

What are possible limitations of an exponentialmodel?

- An expo nential growth model does not have a maximum
- In real-life this might not be the case
- The function might reach a maximum and stay at this value
- Exponentialmodels are monotonic
- In real-life this might not be the case
- The function might fluctuate

How can I find the half-life using an exponentialmodel?

- Youmayneed to find the half-life of a substance
- This is the time taken for the mass of a substance to halve
- Given an exponential model $f(t)=k a^{-t}$ or $f(t)=k \mathrm{e}^{-r t}$ the half-life is the value of t such that:
- $f(t)=\frac{k}{2}$
- You can solve fort using your GDC
- For $f(t)=k a^{-t}$ the half-life is given by $t=\frac{\ln 2}{\ln a}$
- $\frac{k}{2}=k a^{-t}$
- $a^{t}=2$
- $t \ln a=\ln 2$
- For $f(t)=k \mathrm{e}^{-r t}$ the half-life is given by $t=\frac{\ln 2}{r}$
- $\frac{k}{2}=k \mathrm{e}^{-r t}$
- $\mathrm{e}^{r t}=2$
- $r t=\ln 2$

- Exam Tip

- Look out for the word "initial" orsimilar, as a way of asking you to make the power equal to zero to simplifythe equation
- Questions regarding the boundary of the exponential mo del are also frequentlyasked

Exam Papers Practice

Worked example

The value of a car, $V(N Z D)$, can be mo celled by the function

$$
V(t)=25125 \times 0.8^{t}+8500, t \geq 0
$$

where t is the age of the car in years.
a) State the initial value of the car.

Initial value is when $t=0$
$V(0)=25125 \times 0.8^{0}+8500$

33625 NED

b) Find the age of the car when its value is 17500 NZD.

Copyright
© 2024 Exam Paper 4.60 years

2.3.4 Direct \& Inverse Variation

Direct Variation

What is direct variation?

- Two variables are said to vary directly if their ratio is constant (k)
- This is also called direct proportion
- If \boldsymbol{y} and X^{n} (forpositive integer n) vary directly then:
- It is denoted as $y \propto X^{n}$
- $y=k x^{n}$ forsome constant k
- This can be written as $\frac{y}{x^{n}}=k$
- The graphs of these models always start at the origin

How do Isolve direct variation problems?

- Identify which two variables vary directly
- It might not be \boldsymbol{X} and \boldsymbol{y}
- It could be \boldsymbol{x}^{3} and \boldsymbol{y}
- Use the given information to find their constant ratio k
- Also called constant of proportionality
- Substitute the given values of \boldsymbol{X} and \boldsymbol{y} into yourformula
- Solve to find k
- Write the equation which models their relationship
- $y=k x^{n}$
- Youcan then use the equation to solve problems

Worked example

A computer program sorts a list of numbers into ascending order. The time it takes, t milliseconds, varies directly with the square of the number of items, n, in the list. The computer pro gram takes 48 milliseconds to order a list with 8 items.
a) Find an equation connecting t and n.

Identify the variables that vary directly
$t \propto n^{2}$
Form an equation
$t=k n^{2}$
Use $t=48$ and $n=8$ to
find the value of k
$48=k(8)^{2}$
$64 k=48$

Eva $k=\frac{48}{64}=0.75$
$t=0.75 n^{2}$
b) Find the time it takes to order a list of 50 numbers.

Inverse Variation

What is inverse variation?

- Two variables are said to vary inversely if their product is constant (\boldsymbol{k})
- This is also called inverse proportion
- If y and X^{n} (for positive integer n) vary inversely then:
- It is denoted $y \propto \frac{1}{X^{n}}$
- $y=\frac{k}{X^{n}}$ forsome constant k
- This can be written $x^{n} y=k$
- The graphs of these models all have a vertical asymptote at the \boldsymbol{y}-axis
- This means that as \boldsymbol{X} gets closerto 0 the absolute value of \boldsymbol{Y} gets further away from 0
- \boldsymbol{X} canneverequal 0

How do Isolve inverse variation problems?

- Identifywhich two variables vary inversely
- It might not be \boldsymbol{X} and \boldsymbol{Y}
- It could be x^{3} and y
- Use the given information to find their constant product k
- Also called constant of proportionality
- Substitute the givenvalues of \boldsymbol{X} and \boldsymbol{Y} into yourformula
- Solve to find k
- Write the equation which mo dels their relationship

Copyright 2024 E: $\boldsymbol{y}=\frac{\boldsymbol{K}}{\boldsymbol{X}^{n}}$ Practice

- Youcan then use the equation to solve problems

O Exam Tip

- Reciprocal graphs generally have two parts/curves
- Only one - usually the positive - maybe relevant to the model
- Think about why $\mathbf{x / t} / \boldsymbol{\theta}$ can only take positive values - refer to the context of the question

Worked example

The time, t hours, it takes to complete a project varies inversely to the number of people working on it, \boldsymbol{n}. If 4 people work on the project it takes 70 hours to complete.
a) Write an equation connecting t and n.

Identify the variables that vary directly
$t \propto \frac{1}{n}$
Form an equation
$t=\frac{k}{n}$
Use $t=70$ and $n=4$ to
find the value of k

$70=\frac{k}{4}$

$k=4 \times 70=280$
$t=\frac{280}{n}$
b) Given that the project needs to be completed within 18 hours, find the minimum number of people needed to work on it.

Substitute $t=18$ into the equation
$18=\frac{280}{n}$
$n=\frac{280}{18}=15.55 \ldots$
16 people

2.3.5 Sinusoidal Models

Sinusoidal Models

What are the parameters of a sinusoidal model?

- A sinusoidal model is of the form
- $f(x)=\operatorname{asin}(b(x-c))+d$
- $f(x)=\operatorname{acos}(b(x-c))+d$
- The a represents the amplitude of the function
- The bigger the value of athe bigger the range of values of the function
- The b determines the period of the function
- The bigger the value of b the quicker the function repeats a cycle
- The period is $\frac{360^{\circ}}{b}$ (in degrees) or $\frac{2 \pi}{b}$ (in radians)
- The crepresents the phase shift
- This is a horizontal translation by cunits
- The drepresents the principal axis
- This is the line that the function fluctuates around

What can be modelled as a sinusoidalmodel?

- Anything that oscillates (fluctuates perio dic ally)
- Examples include:
- $D(t)$ is the depth of water at a shore t ho urs aftermidnight
- $T(d)$ is the temperature of a city ddays after the 1st January
- $H(t)$ is vertical height above ground of a person t second after entering a Ferris wheel

What are possible limitations of a sinusoidal model?

- The amplitude is the same for each cycle
- In real-life this might not be the case
- The function might get closerto the principal axis over time
- The period is the same foreach cycle
- In real-life this might not be the case
- The time to complete a cycle might change over time

- Exam Tip

- Read and re-read the question carefully, try to get involved in the context of the question!
- Sketch a graph of the function being used as the model, use your GDC to help you and focus on the given domain
- Remember that if the model is adjusted, horizontal translations happen before horizontal stretches

Worked example

The water depth, D, in metres, at a port can be modelled by the function

$$
D(t)=3 \sin \left(\frac{\pi}{12}(t-2)\right)+12,0 \leq t<24
$$

where t is the elapsed time, in hours, since midnight.
a) Write down the depth of the water at midnight.

Substitute $t=0$ for midnight
$D(0)=3 \sin \left(\frac{\pi}{2}(t-\mu)+12\right.$
10.5 m

b) Find the minimum water depth and the number of hours after midnight that this depth occurs.

Use $G D C$ to find the minimum

C) Calculate how long the water depth is at least 13.5 metres each day.
dam Papers Practice
Use $G D C$ to find $D(t)=13.5$
$3 \sin \left(\frac{\pi}{12}(t-2)\right)+12=13.5$

the times
$12-4=8$
8 hours

2.3.6 Strategy for Modelling Functions

Modelling with Functions

What is a mathematicalmodel?

- A mathematical model simplifies a real-world situation so it can be described using mathematics
- The model can then be used to make predictions
- Be aware that extrapolating (making predictions outside of the range of the data) is not considered to be accurate
- Assumptions about the situation are made in orderto simplify the mathematics
- Models can be refined (improved) if further information is available or if the model is compared to real-world data

How do lset up the model?

- The question could:
- give you the equation of the model
- tellyou about the relationship
- It might say the relationship is linear, quadratic, etc
- askyou to suggest a suitable model
- Use your knowledge of each model
- E.g. if it is compound interest then an exponential model is the most appropriate
- You may have to determine a reasonable do main
- Consider real-life context
- E.g. if dealing with hours in a daythen $0 \leq t<24$
- E.g. if dealing with physical quantities (such as length) then $X>0$
- Consider the possible ranges
- If the outcome cannot be negative then you want to choose a domain which corresponds to a range with no negative values
- Sketching the graph is helpful to determine a suitable domain

Which models do Ineed to know?

- Linear
- Piecewise (linear \& non-linear)
- Quadratic
- Cubic
- Exponential
- Natural lo garithmic
- Logistic
- Direct variation
- Inverse variation
- Sinusoidal

(9) Exam Tip

- You need to be familiar with the format of the different types of equations and the general shape of the graphs they produce, you need to always be thinking "does myanswerseem appropriate for the given situation?"
- Sketching graphs is key
- Make sure that you use your GDC to plot the relevant functions)
- Sometimes you may have to play around with the zoom function or the axes to make sure that you are focused on the relevant do main

Worked example

A cliff has a height h metres above the ground. A stone is projected from the edge of the cliff and it travels through the air until it hits the ground and stops. The vertical height, in metres, of the stone above the ground t seconds after being thrown is given by the function:

$$
h(t)=95+6 t-5 t^{2}
$$

a) State the initial value of h.
Initial value is the height of the cliff

$$
\begin{equation*}
h(0)=95+6(0)-5(0)^{2} \tag{1}
\end{equation*}
$$

Copyright
b) Exam Determine the do main of $h(t)$.

Stone stops at ground when $h(t)=0$
$95+6 t-5 t^{2}=0$
$t=5$ or $t=-3.8$
\uparrow
Reject as time can't
 be negative
$0 \leq t \leq 5$

Finding Parameters

What doldo if some of the parameters are unknown?

- Forsome models you can use yourknowledge to find unknown parameters directlyfrom the information given
- Foralinear model $f(x)=m x+c$
- m is the rate of change, or gradient
- \boldsymbol{C} is the initial value
- For a quadratic model, $f(x)=a x^{2}+b x+c$
- $X=\frac{-b}{2 a}$ is the axis of symmetry (this is given in the formula bo oklet) and is the \boldsymbol{X}-value of the minimum/maximum point
- \boldsymbol{C} is the initial value
- For a cubic model, $f(x)=a x^{3}+b x^{2}+c x+d$
- d is the initial value
- For an exponential model, $f(x)=k a^{x}+c$
- $k+c$ is the initial value
- $y=c$ is the horizontal asymptote, so \boldsymbol{C} is a bound ary of the model
- Fora sinusoidal model $f(x)=a \sin (b x)+d$
- \boldsymbol{a} is the amplitude
- $y=d$ is the principal axis
- $\frac{360}{b}$ is the period
- A general method is to form equations by substituting in given values
- You can form multiple equations and solve them simult aneo usly using your GDC
- Youcould be expected to solve a system of up to three simultaneous equations of three unknowns
- This method works for all models
- The initial value is the value of the function when \boldsymbol{X} (or the independent variable) is 0
- This is often one of the parameters in the equation of the model

- Exam Tip

- It can save you time in exams to know the properties of functions listed above that allow you to find parameters directly from the information given

Worked example

The temperature, $T^{\circ} \mathrm{C}$, of a cup of coffee is monitored. Initially the temperature is $80^{\circ} \mathrm{C}$ and 5 minutes later it is $40^{\circ} \mathrm{C}$. It is suggested that the temperature follows the model:

$$
T(t)=k a^{-t}+16, \quad t \geq 0
$$

where t is the time, in minutes, after the coffee has been made.
a) State the value of \boldsymbol{K}.

Initially temperature is $80^{\circ} \mathrm{C}$
$T(0)=80$
$k a^{-0}+16=80$
$k+16=80$
$k=64$
b) Find the value of \boldsymbol{a}.

After 5 minutes the temperature is $40^{\circ} \mathrm{C}$
$T(5)=40$
$64 a^{-5}+16=40$
© 2024 Exam Pap
Solve using CDC
$a=1.21672 \ldots$

$a=1.22 \quad(3 s f)$

