

Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme

Suitable for all boards

Designed to test your ability and thoroughly prepare you

2.3 Functions Toolkit

IB Maths - Revision Notes

AA SL

2.3.1 Language of Functions

Language of Functions

What is a mapping?

- A mapping transforms one set of values (inputs) into another set of values (outputs)
- Mappings can be:
 - One-to-one
 - Each input gets mapped to exactly one unique output
 - No two inputs are mapped to the same output
 - For example: A mapping that cubes the input
 - Many-to-one
 - Each input gets mapped to exactly one output
 - Multiple inputs can be mapped to the same output
 - For example: A mapping that squares the input
 - One-to-many
 - An input can be mapped to **more than one** output
 - No two inputs are mapped to the same output
 - For example: A mapping that gives the numbers which when squared equal the input
 - Many-to-many
 - An input can be mapped to **more than one** output
 - Multiple inputs can be mapped to the same output
 - For example: A mapping that gives the factors of the input

What is a function?

© 2 2 2 4 function is a mapping between two sets of numbers where each input gets mapped to exactly one output

pers Practice

- The output does not need to be unique
- One-to-one and many-to-one mappings are functions
- A mapping is a function if its graph passes the **vertical line test**
- Any vertical line will intersect with the graph at most once

MANY-TO-ONE MAPPINGS ARE FUNCTIONS

ONE-TO-ONE MAPPINGS ARE FUNCTIONS

actice

What notation is used for functions?

- Functions are denoted using letters (such as f, v, g, etc)
 - A function is followed by a variable in a bracket
 - This shows the input for the function
 - The letter f is used most commonly for functions and will be used for the remainder of this revision note
- f(x) represents an expression for the value of the function f when evaluated for the variable X
- Function notation gets rid of the need for words which makes it **universal**
 - f = 5 when x = 2 can simply be written as f(2) = 5

What are the domain and range of a function?

Copyright he **domain** of a function is the set of values that are used as **inputs**

© 2024 Adomain should be stated with a function

- If a domain is not stated then it is assumed the domain is all the real values which would work as inputs for the function
- Domains are expressed in terms of the input
 - *x* ≤ 2
- The **range** of a function is the set of values that are given as **outputs**
 - The range depends on the domain
 - Ranges are expressed in terms of the output
 - $f(x) \ge 0$
- To graph a function we use the inputs as the x-coordinates and the outputs as the ycoordinates
 - f(2) = 5 corresponds to the coordinates (2, 5)
- Graphing the function can help you visualise the range
- Common sets of numbers have special symbols:
 - \mathbb{R} represents all the real numbers that can be placed on a number line
 - $X \in \mathbb{R}$ means X is a real number

- \mathbb{Q} represents all the rational numbers $\frac{a}{b}$ where *a* and *b* are integers and $b \neq 0$
- \mathbb{Z} represents all the integers (positive, negative and zero)
 - **Z**⁺ represents positive integers
- N represents the natural numbers (0,1,2,3...)

What are piecewise functions?

 Piecewise functions are defined by different functions depending on which interval the input is in

Copyright	x + 1	$x \leq 5$
© 2024 Exam Papers Prace • E.g. $f(x) = c$	2x - 4	5 < x < 10
	<i>x</i> ²	$10 \le x \le 20$

- The region for the individual functions **cannot overlap**
- To evaluate a piecewise function for a particular value x = k
 - Find which interval includes $\,k$
 - Substitute x = k into the corresponding function
- The function may or may not be continuous at the ends of the intervals
 - In the example above the function is
 - continuous at x = 5 as 5 + 1 = 2(5) 4
 - not continuous at x = 10 as $2(10) 4 \neq 10^2$

2.3.2 Composite & Inverse Functions

Composite Functions

What is a composite function?

- A **composite function** is where a function is applied to another function
- A composite function can be denoted
 - $(f \circ g)(x)$
 - fg(x)
 - f(g(x))
- The order matters
 - $(f \circ g)(x)$ means:
 - First apply g to x to get g(x)
 - Then apply f to the previous output to get f(g(x))
 - Always start with the function closest to the variable
 - $(f \circ g)(x)$ is not usually equal to $(g \circ f)(x)$

How do I find the domain and range of a composite function?

- The domain of $f \circ g$ is the set of values of x_{\dots}
 - which are a subset of the domain of g
 - which maps g to a value that is in the domain of f
- The range of $f \circ g$ is the set of values of x_{\cdots}
 - which are a subset of the range of f
 - found by applying f to the range of g
- To find the **domain** and **range** of $f \circ g$
 - First find the range of g
 - Restrict these values to the values that are within the domain of f
 - The domain is the set of values that produce the restricted range of g

Pyright • The **range** is the set of values that are **produced using the restricted range** of g as the

© 2024 Exam Padomainförf

- For example: let f(x) = 2x + 1, $-5 \le x \le 5$ and $g(x) = \sqrt{x}$, $1 \le x \le 49$
 - The range of g is $1 \le g(x) \le 7$
 - **Restricting** this to fit the **domain of** *f* results in $1 \le g(x) \le 5$
 - The **domain** of $f \circ g$ is therefore $1 \le x \le 25$
 - These are the values of x which map to $1 \le g(x) \le 5$
 - The range of $f \circ g$ is therefore $3 \le (f \circ g)(x) \le 11$
 - These are the values which f maps $1 \le g(x) \le 5$ to

💽 Exam Tip

- Make sure you know what your GDC is capable of with regard to functions
 - You may be able to store individual functions and find composite functions and their values for particular inputs
 - You may be able to graph composite functions directly and so deduce their domain and range from the graph
- ff(x) is not the same as $[f(x)]^2$

Page 5 of 17

Given $f(x) = \sqrt{x+4}$ and g(x) = 3+2x: a) Write down the value of $(g \circ f)(12)$. First apply function closest to input $(g \circ f)(12) = g(f(12))$ $f(12) = \sqrt{12+4} = \sqrt{16} = 4$ g(4) = 3 + 2(4) = 11(g o f)(12) = 11 b) Write down an expression for $(f \circ g)(x)$. First apply function closest to input

$$(f \circ g)(x) = f(g(x))$$

= $f(3+2x)$
Example $f(3+2x)$
Copyright
 $(f \circ g)(x) = \sqrt{7+2x}$

c) Write down an expression for
$$(g \circ g)(x)$$

$$(g \circ g)(x) = g(g(x))$$

= $g(3 + 2x)$
= $3 + 2(3 + 2x)$
= $3 + 6 + 4x$
 $(g \circ g)(x) = 9 + 4x$

Inverse Functions

What is an inverse function?

- Only one-to-one functions have inverses
- A function has an inverse if its graph passes the **horizontal line test**
 - Any horizontal line will intersect with the graph at most once
- The identity function id maps each value to itself
 - $\operatorname{id}(x) = x$
- If $f \circ g$ and $g \circ f$ have the same effect as the identity function then f and g are inverses
- Given a function f(x) we denote the inverse function as $f^{-1}(x)$
- An inverse function **reverses the effect** of a function
 - f(2) = 5 means $f^{-1}(5) = 2$
- Inverse functions are used to solve equations
 - The solution of f(x) = 5 is $x = f^{-1}(5)$
- A composite function made of f and f^{-1} has the same effect as the identity function
 - $(f \circ f^{-1})(x) = (f^{-1} \circ f)(x) = x$

What are the connections between a function and its inverse function?

- The domain of a function becomes the range of its inverse
- The range of a function becomes the domain of its inverse
- The graph of $y = f^{-1}(x)$ is a **reflection** of the graph y = f(x) in the line y = x
 - Therefore solutions to f(x) = x or $f^{-1}(x) = x$ will also be solutions to $f(x) = f^{-1}(x)$
 - There could be other solutions to $f(x) = f^{-1}(x)$ that don't lie on the line y = x

How do I find the inverse of a function?

s Practice • STEP 1: Swap the x and y in y = f(x)• If $y = f^{-1}(x)$ then x = f(y)

STEP 2: **Rearrange** x = f(y) to make y the subject © 2024 Ex

- Note this can be done in any order
 - Rearrange y = f(x) to make *X* the subject
 - Swap X and V

💽 Exam Tip

• Remember that an inverse function is a reflection of the original function in the line Y = X

1

• Use your GDC to plot the function and its inverse on the same graph to visually check this

•
$$f^{-1}(x)$$
 is not the same as $\frac{1}{f(x)}$

For the function
$$f(x) = \frac{2x}{x-1}$$
, $x > 1$:

a) Find the inverse of
$$f(x)$$
.

Let
$$y = f^{-1}(x)$$
 and rearrange $x = f(y)$
 $x = \frac{2y}{y^{-1}}$
 $x(y-1) = 2y$
 $xy - x = 2y$
 $xy - 2y = x$
 $y = \frac{x}{x-2}$
 $f^{-1}(x) = \frac{x}{x-2}$
b) Find the domain of $f^{-1}(x)$.
Domain of f^{-1} is the range of f
Sketch $y = f(x) = 0$
see range
For $x > 1$, $f(x) > 2$
 $y = 1$
 $y = 2$
 y

c) Find the value of k such that f(k) = 6.

Use inverse $f(a) = b \iff a = f^{-1}(b)$ $k = f^{-1}(b) = \frac{b}{b-2}$ $k = \frac{3}{2}$

2.3.3 Graphing Functions

Graphing Functions

How do I graph the function y = f(x)?

- Apoint (a, b) lies on the graph y = f(x) if f(a) = b
- The horizontal axis is used for the domain
- The vertical axis is used for the range
- You will be able to graph some functions by hand
- For some functions you will need to use your GDC
- You might be asked to graph the **sum** or **difference** of two functions
 - Use your GDC to graph y = f(x) + g(x) or y = f(x) g(x)
 - Just type the functions into the graphing mode

What is the difference between "draw" and "sketch"?

- If asked to sketch you should:
 - Show the general shape
 - Label any key points such as the intersections with the axes
 - Label the axes
- If asked to draw you should:
 - Use a pencil and ruler
 - Draw to scale
 - Plot any points accurately
 - Join points with a straight line or smooth curve
 - Label any key points such as the intersections with the axes
- Copyright Label the axes

^{© 2}Howcan myGDC help me sketch/drawa graph?

- You use your GDC to plot the graph
 - Check the scales on the graph to make sure you see the full shape
- Use your GDC to find any key points
- Use your GDC to check specific points to help you plot the graph

actice

Key Features of Graphs

What are the key features of graphs?

- You should be familiar with the following key features and know how to use your GDC to find them
- Local minimums/maximums
 - These are points where the graph has a minimum/maximum for a small region
 - They are also called **turning points**
 - This is where the graph changes its direction between upwards and downwards directions
 - A graph can have multiple local minimums/maximums
 - A local minimum/maximum is not necessarily the minimum/maximum of the whole graph
 - This would be called the **global** minimum/maximum
 - For quadratic graphs the minimum/maximum is called the vertex
- Intercepts
 - y-intercepts are where the graph crosses the y-axis
 - At these points x = 0
 - x intercepts are where the graph crosses the x-axis
 - At these points y=0
 - These points are also called the zeros of the function or roots of the equation
- Symmetry
 - Some graphs have lines of symmetry
 - A quadratic will have a vertical line of symmetry
- Asymptotes
 - These are lines which the graph will get closer to but not cross
 - These can be horizontal or vertical
 - Exponential graphs have horizontal asymptotes
 - Graphs of variables which vary inversely can have vertical and horizontal asymptotes

Copyright © 2024 Exam Papers Practice

💽 Exam Tip

Most GDC makes/models will not plot/show asymptotes just from inputting a function

- Add the asymptotes as additional graphs for your GDC to plot
- You can then check the equations of your asymptotes visually
- © 2024 Exam Rapers Practice You may have to zoom in or change the viewing window options to confirm an asymptote
 - Even if using your GDC to plot graphs and solve problems sketching them as part of your working is good exam technique
 - Label the key features of the graph and anything else relevant to the question on your sketch

Two functions are defined by

$$f(x) = x^2 - 4x - 5$$
 and $g(x) = 2 + \frac{1}{x+1}$

a) Draw the graph y = f(x).

b) Sketch the graph y = g(x).

Sketch means rough but showing key points Use GDC to find ∞ and y-intercepts and asymptotes ∞ -intercept = $(-\frac{3}{2}, 0)$ y-intercept = (0, 3)

Asymptotes :
$$x = -1$$
 and $y = 2$

Exam Papers Practice

Intersecting Graphs Exam Papers Practice

$How \, do \, I \, find \, where \, two \, graphs \, intersect?$

- Plot both graphs on your GDC
- Use the intersect function to find the intersections
- Check if there is more than one point of intersection

Exam Papers Practice

© 2024 Exam Papone method to solve equations is to use graphs

- To solve f(x) = a
 - Plot the two graphs y = f(x) and y = a on your GDC
 - Find the points of intersections
 - The *x*-coordinates are the solutions of the equation
- To solve f(x) = g(x)
 - Plot the two graphs y = f(x) and y = g(x) on your GDC
 - Find the points of intersections
 - The x-coordinates are the solutions of the equation
- Using graphs makes it easier to see **how many solutions** an equation will have

💽 Exam Tip

- You can use graphs to solve equations
 - Questions will not necessarily ask for a drawing/sketch or make reference to graphs
 - Use your GDC to plot the equations and find the intersections between the graphs

Two functions are defined by

$$f(x) = x^3 - x$$
 and $g(x) = \frac{4}{x}$.

a) Sketch the graph y = f(x).

c) Find the coordinates of the points where y = f(x) and y = g(x) intersect.

© 2024 Exam Papers Practice