铛
 EXAM PAPERS PRACTICE

Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme
Suitable for all boards
Designed to test your ability and thoroughly prepare you

2.3 Functions Toolkit

AA SL

2.3.1 Language of Functions

Language of Functions

What is a mapping?

- A mapping trans forms one set of values (inputs) into anotherset of values (outputs)
- Mappings canbe:
- One-to-one
- Each input gets mapped to exactly one unique output
- No two inputs are mapped to the same output
- For example:A mapping that cubes the input
- Many-to-one
- Each input gets mapped to exactly one output
- Multiple inputs can be mapped to the same output
- For example:A mapping that squares the input
- One-to-many
- An input can be mapped to more than one output
- No two inputs are mapped to the same output
- For example:A mapping that gives the numbers which when squared equal the input
- Many-to-many
- An input can be mapped to more than one output
- Multiple inputs can be mapped to the same output
- For example:A mapping that gives the factors of the input

What is a function?

- Afunction is a mapping between two sets of numbers where each input gets mapped to exactly one output
- The output does not need to be unique
- One-to-one and many-to-one mappings are functions
- A mapping is a function if its graph passes the vertical line test
- Any vertical line will intersect with the graph at most once

Exam Papers Practice

MANY-TO-ONE MAPPINGS ARE FUNCTIONS

ONE-TO-ONE MAPPINGS ARE FUNCTIONS

What notation is used for functions?

- Functions are denoted using letters (such as f, V, g, etc)
- A function is followed bya variable in a bracket
- This shows the input for the function
- The letter f is used most commonly for functions and will be used forthe remainder of this revisionnote
- $f(x)$ represents an expression for the value of the function f when evaluated for the variable X
- Functionnotation gets rid of the need forwords which makes it universal
- $f=5$ when $x=2$ can simply be written as $f(2)=5$

What are the domain and range of a function?

- The domain of a function is the set of values that are used as inputs
- Adomain shoula be stated with a function
- If a do main is not stated then it is assumed the domain is all the real values which would work as inputs for the function
- Domains are expressed in terms of the input
- $x \leq 2$
- The range of a function is the set of values that are given as outputs
- The range depends on the domain
- Ranges are expressed in terms of the output
- $f(x) \geq 0$
- To graph a function we use the inputs as the \boldsymbol{x}-coordinates and the outputs as the \boldsymbol{y} coordinates
- $f(2)=5$ corresponds to the coordinates $(2,5)$
- Graphing the function can help you visualise the range
- Commonsets of numbers have special symbols:
- \mathbb{R} represents all the real numbers that can be placed on a number line
- $X \in \mathbb{R}$ means X is a real number

Page 2 of 17
For more help visit our website www.exampaperspractice.co.uk

- \mathbb{Q} represents all the ratio nal numbers $\frac{a}{b}$ where a and bare integers and $b \neq 0$
- \mathbb{Z} represents all the integers (positive, negative and zero)
- \mathbb{Z}^{+}represents positive integers
- \mathbb{N} represents the natural numbers ($0,1,2,3 \ldots$...)

What are piecewise functions?

- Piecewise functions are defined by different functions depending on which interval the input is in
- E.g. $f(x)=\left\{\begin{array}{cl}x+1 & x \leq 5 \\ 2 x-4 & 5<x<10 \\ x^{2} & 10 \leq x \leq 20\end{array}\right.$
- The region for the individual functions cannot overlap
- To evaluate a piecewise function for a particular value $X=k$
- Find which interval includes \boldsymbol{K}
- Substitute $\boldsymbol{X}=\boldsymbol{k}$ into the corresponding function
- The function may or may not be continuous at the ends of the intervals
- In the example above the function is
- continuous at $X=5$ as $5+1=2(5)-4$
- not continuous at $X=10$ as $2(10)-4 \neq 10^{2}$

Exam Papers Practice

(9) Exam Tip

- Questions mayrefer to "the largest possible domain"
- This would usually be $X \in \mathbb{R}$ unless \mathbb{N}, \mathbb{Z} or \mathbb{Q} has alreadybeen stated
- There are usually some exceptions
- e.g. square roots; $X \geq 0$ for a function involving \sqrt{X}
- egg. reciprocal functions; $X \neq 2$ fora function with denominator $(x-2)$

Worked example

Forthe function $f(x)=x^{3}+1,2 \leq x \leq 10$:
a) write do en the value of $f(7)$.

Substitute $x=7$
$f(7)=7^{3}+1$

$f(7)=344$
b) find the range of $f(x)$.

Find the values of $x^{3}+1$ when $2 \leqslant x \leqslant 10$

$$
2 \leqslant x \leqslant 10
$$

© 2024 Exam Pap

$$
\begin{aligned}
& 8 \leq x^{3} \leq 1000 \\
& 9 \leq x^{3}+1 \leq 1001 \\
& 9 \leqslant f(x) \leq 1001
\end{aligned}
$$

Exam Papers Practice

2.3.2 Composite \& Inverse Functions

Composite Functions

What is a composite function?

- A composite functionis where a function is applied to anotherfunction
- Acomposite functioncan be denoted
- $(f \circ g)(x)$
- $f g(x)$
- $f(g(x))$
- The ordermatters
- $(f \circ g)(x)$ means:
- First apply g to x to get $g(x)$
- Then apply f to the previous output to get $f(g(X))$
- Always start with the function closest to the variable
- $(f \circ g)(x)$ is not usually equal to $(g \circ f)(x)$

How do I find the domain and range of a composite function?

- The domain of $f \circ g$ is the set of values of \boldsymbol{X}..
- which are a subset of the domain of g
- which maps g to a value that is in the domain of f
- The range of $f \circ g$ is the set of values of \boldsymbol{X}.
- which are a subset of the range of f
- found byapplying f to the range of g
- To find the domain and range of $f \circ g$
- First find the range of g
- Restrict these values to the values that are within the do main of f
- The domain is the set of values that produce the restricted range of g
- The range is the set of values that are produced using the restricted range of g as the domainfor f
- For example:let $f(x)=2 x+1,-5 \leq x \leq 5$ and $g(x)=\sqrt{x}, 1 \leq x \leq 49$
- The range of g is $1 \leq g(x) \leq 7$
- Restricting this to fit the domain of fresults in $1 \leq g(x) \leq 5$
- The domain of $f \circ g$ is therefore $1 \leq x \leq 25$
- These are the values of x which map to $1 \leq g(x) \leq 5$
- The range of $f \circ g$ is therefore $3 \leq(f \circ g)(x) \leq 11$
- These are the values which f maps $1 \leq g(x) \leq 5$ to

(9) Exam Tip

- Make sure you know what yo ur GDC is capable of with regard to functions
- You may be able to store individual functions and find composite functions and their values for particular inputs
- You may be able to graph composite functions directly and so deduce their domain and range from the graph
- $f f(x)$ is not the same as $[f(x)]^{2}$

Exam Papers Practice

Worked example

Given $f(x)=\sqrt{x+4}$ and $g(x)=3+2 x$:
a) Write down the value of $(g \circ f)(12)$.

First apply function closest to input
$(g \circ f)(12)=g(f(12))$
$f(12)=\sqrt{12+4}=\sqrt{16}=4$
$g(4)=3+2(4)=11$
$(g \circ f)(12)=11$
b) Write down an expression for $(f \circ g)(x)$

First apply function closest to input
$(f \circ g)(x)=f(g(x))$
$=f(3+2 x)$

- 2

Copyright

$$
\begin{aligned}
& =\sqrt{3+2 x+4} \\
(f \circ g)(x) & =\sqrt{7+2 x}
\end{aligned}
$$

c) Write down an expression for $(g \circ g)(x)$.

$$
\begin{aligned}
(g \circ g)(x) & =g(g(x)) \\
& =g(3+2 x) \\
& =3+2(3+2 x) \\
& =3+6+4 x \\
(g \circ g)(x) & =9+4 x
\end{aligned}
$$

Exam Papers Practice

Inverse Functions

What is an inverse function?

- Only one-to-one functions have inverses
- A function has an inverse if its graph passes the horizons al line test
- Anyhorizont al line will intersect with the graph at most once
- The identity function id maps each value to itself
- $\operatorname{id}(x)=x$
- If $f \circ g$ and $g \circ f$ have the same effect as the identity function then f and g are inverses
- Given a function $f(x)$ we denote the inverse function as $f^{-1}(X)$
- An inverse function reverses the effect of a function
- $f(2)=5$ means $f^{-1}(5)=2$
- Inverse functions are used to solve equations
- The solution of $f(x)=5$ is $X=f^{-1}(5)$
- A composite function made of f and f^{-1} has the same effect as the identity function
- $\left(f \circ f^{-1}\right)(x)=\left(f^{-1} \circ f\right)(x)=x$

INVERSE FUNCTIONS

Copyright

© 2024 Exam Papers Practice

What are the connections between a function and its inverse function?

- The domain of a function becomes the range of its inverse
- The range of a function becomes the domain of its inverse
- The graph of $y=f^{-1}(x)$ is a reflection of the graph $y=f(x)$ in the line $y=x$
- Therefore solutions to $f(x)=X$ or $f^{-1}(X)=X$ will also be solutions to $f(x)=f^{-1}(x)$
- There could be other solutions to $f(x)=f^{-1}(x)$ that don't lie on the line $y=x$

Howdolfind the inverse of a function?

- STEP 1: Swap the x and y in $y=f(x)$
- If $y=f^{-1}(x)$ then $x=f(y)$
- STEP 2: Rearrange $\boldsymbol{x}=f(y)$ to make y the subject
- Note this can be done in anyorder
- Rearrange $y=f(x)$ to make X the subject
- Swap X and \boldsymbol{Y}

O Exam Tip

- Remember that an inverse function is a reflection of the original function in the line $y=x$
- Use your GDC to plot the function and its inverse on the same graph to visually check this
- $f^{-1}(x)$ is not the same as $\frac{1}{f(x)}$

Worked example

For the function $f(x)=\frac{2 x}{x-1}, x>1$:
a) Find the inverse of $f(x)$.

$$
\begin{aligned}
& \text { Let } y=f^{-1}(x) \text { and rearrange } x=f(y) \\
& x=\frac{2 y}{y-1} \\
& x(y-1)=2 y \\
& x y-x=2 y \\
& x y-2 y=x \\
& y(x-2)=x \\
& y=\frac{x}{x-2} \\
& f^{-1}(x)=\frac{x}{x-2}
\end{aligned}
$$

b) Find the domain of $f^{-1}(x)$.

Domain of f^{-1} is the range of f
Sketch $y=f(x)$ to

Copyright
see range
For $x>1, f(x)>2$

Domain of $f^{-1}: x>2$
c) Find the value of k such that $f(k)=6$.

$$
\begin{aligned}
& \text { Use inverse } f(a)=b \Leftrightarrow a=f^{-1}(b) \\
& k=f^{-1}(b)=\frac{6}{6-2} \\
& k=\frac{3}{2}
\end{aligned}
$$

2.3.3 Graphing Functions

Graphing Functions

How do I graph the function $y=f(x)$?

- A point (a, b) lies on the graph $y=f(x)$ if $f(a)=b$
- The horizontal axis is used for the do main
- The vertical axis is used forthe range
- You will be able to graph so me functions by hand
- For some functions yo u will need to use your GDC
- Youmight be asked to graph the sum or difference of two functions
- Use your GDC to graph $y=f(x)+g(x)$ or $y=f(x)-g(x)$
- Just type the functions into the graphing mo de

What is the difference between "draw" and "sketch"?

- If asked to sketch you should:
- Show the general shape
- Label anykeypoints such as the intersections with the axes
- Labelthe axes
- If asked to draw you should:
- Use a pencil and ruler
- Draw to scale
- Plot anypoints accurately
- Join points with a straight line or smooth curve
- Label any keypoints such as the intersections with the axes
- Label the axes

How canmy GDC help mesketch/drawa graph?

- You use your GDC to plot the graph
- Check the scales on the graph to make sure you see the full shape
- Use your GDC to find any key points
- Use your GDC to check specific points to help you plot the graph

Key Features of Graphs

What are the keyfeatures of graphs?

- You should be familiar with the following keyfeatures and know how to use your GDC to find them
- Local minimums/maximums
- These are points where the graph has a minimum/maximum for a small region
- They are also called turning points
- This is where the graph changes its direction between upwards and downwards directions
- A graph can have multiple lo cal minimums/maximums
- Alocal minimum/maximum is not necess arily the minimum/maximum of the whole graph
- This would be called the global minimum/maximum
- For quadratic graphs the minimum/maximum is called the vertex
- Intercepts
- y-intercepts are where the graph crosses the y-axis
- At these points $x=0$
- x-intercepts are where the graph crosses the x-axis
- At these points $y=0$
- These points are also called the zeros of the function or roots of the equation
- Symmetry
- Some graphs have lines of symmetry
- A quadratic will have a vertic al line of symmetry
- Asymptotes
- These are lines which the graph will get closer to but not cross
- These can be horizontal orvertical
- Exponential graphs have ho rizontal asymptotes
- Graphs of variables which vary inverselycan have vertical and horizontal asymptotes

(-) Exam Tip

- Most GDC makes/mo dels will not plot/show asymptotes just from inputting a function
- Add the asymptotes as additional graphs for your GDC to plot
- You can then check the equations of your asymptotes visually
- You may have to zoom in or change the viewing window options to confirm an asymptote
- Even if using your GDC to plot graphs and solve problems sketching them as part of your working is good exam technique
- Label the keyfeatures of the graph and anything else relevant to the question on your sketch

Exam Papers Practice

Worked example

Two functions are defined by

$$
f(x)=x^{2}-4 x-5 \text { and } g(x)=2+\frac{1}{x+1} .
$$

a) Draw the graph $y=f(x)$.

Draw means accurately
Use GDC to find vertex, roots and y-intercepts
Vertex $=(2,-9)$
Roots $=(-1,0)$ and $(5,0)$
y-intercept $=(0,-5)$

b) Sketch the graph $y=g(x)$.

Sketch means rough but showing key points Use GDC to find x and y-intercepts and asymptotes x-intercept $=\left(-\frac{3}{2}, 0\right)$
y-intercept $=(0,3)$
Asymptotes: $x=-1$ and $y=2$

Exam Papers Practice
© 2024 Exam Papers Practice

How do I find where two graphs intersect?

- Plot both graphs on your GDC
- Use the intersect function to find the intersections
- Check if there is more than one point of intersection

How can Iuse graphs to solve equations?

- One metho do solve equations is to use graphs
- To solve $f(x)=a$
- Plot the two graphs $y=f(x)$ and $y=a$ on your GDC
- Find the points of intersections
- The \boldsymbol{x}-coordinates are the solutions of the equation
- To solve $f(x)=g(x)$
- Plot the two graphs $y=f(x)$ and $y=g(x)$ on your GDC
- Find the points of intersections
- The \boldsymbol{x}-coordinates are the solutions of the equation
- Using graphs makes it easier to see how many solutions an equation will have

(-) Exam Tip

- Youcan use graphs to solve equations
- Questions will not necessarily ask for a drawing/sketch ormake reference to graphs
- Use your GDC to plot the equations and find the intersections between the graphs

Worked example

Two functions are defined by

$$
f(x)=x^{3}-x \text { and } g(x)=\frac{4}{x} .
$$

a) Sketch the graph $y=f(x)$.

Use $G D C$ to find max, min, intercepts

b) Write down the number of real solutions to the equation $x^{3}-x=2$.

Identify the number of intersections between

$$
y=x^{3}-x \text { and } y=2
$$

© 2024 Exam Papers Pr pctice
1 solution
c) Find the coordinates of the points where $y=f(x)$ and $y=g(x)$ intersect.

Exam Papers Practice

Use GDC to sketch both graphs

$$
(-1.60,-2.50) \text { and }(1.60,2.50)
$$

d)

$$
\text { Write down the solutions to the equation } x^{3}-x=\frac{4}{x} \text {. }
$$

Solutions to $x^{3}-x=\frac{4}{x}$ are the x coordinates of the points of intersection.

$$
x=-1.60 \text { and } x=1.60
$$

