

2.2 Quadratic Functions & Graphs

Contents

- * 2.2.1 Quadratic Functions
- * 2.2.2 Factorising & Completing the Square
- * 2.2.3 Solving Quadratics
- * 2.2.4 Quadratic Inequalities
- * 2.2.5 Discriminants

Tights Reserved

2.2.1 Quadratic Functions

Quadratic Functions & Graphs

What are the key features of quadratic graphs?

- A quadratic graph can be written in the form $y = ax^2 + bx + c$ where $a \ne 0$
- The value of a affects the shape of the curve
 - If a is **positive** the shape is **concave up** ∪
 - If a is **negative** the shape is **concave down** \cap
- The **y-intercept** is at the point (0, c)
- The **zeros or roots** are the solutions to $ax^2 + bx + c = 0$
 - These can be found by
 - Factorising
 - Quadratic formula
 - Using your GDC
 - These are also called the *x*-intercepts
 - There can be 0, 1 or 2 *x*-intercepts
 - This is determined by the value of the discriminant
- There is an axis of symmetry at $x = -\frac{b}{2a}$
 - This is given in your formula booklet
 - If there are two x-intercepts then the axis of symmetry goes through the midpoint of them
- The **vertex** lies on the axis of symmetry
 - It can be found by **completing the square**
 - The x-coordinate is $X = -\frac{b}{2a}$
 - The y-coordinate can be found using the GDC or by calculating y when $x = -\frac{b}{2a}$
 - If a is **positive** then the vertex is the **minimum point**
 - If a is negative then the vertex is the maximum point

What are the equations of a quadratic function?

$$f(x) = ax^2 + bx + c$$

- This is the general form
- It clearly shows the y-intercept (0, c)
- You can find the axis of symmetry by $X = -\frac{b}{2a}$
 - This is given in the formula booklet

$$f(x) = a(x-p)(x-q)$$

- This is the **factorised form**
- It clearly shows the roots (p, 0) & (q, 0)
- You can find the axis of symmetry by $X = \frac{p+q}{2}$

$$f(x) = a(x-h)^2 + k$$

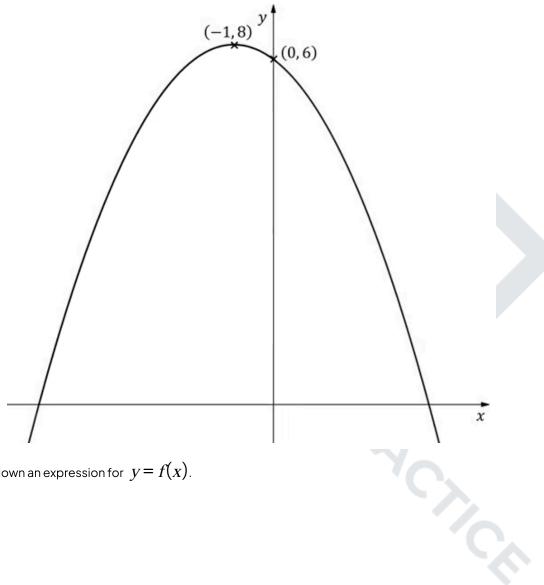
- This is the **vertex form**
- It clearly shows the vertex (h, k)
- The axis of symmetry is therefore X = h
- It clearly shows how the function can be transformed from the graph $y = x^2$
 - Vertical stretch by scale factor a
 - Translation by vector $\begin{pmatrix} h \\ k \end{pmatrix}$

How do I find an equation of a quadratic?

- If you have the **roots** x = p and x = q...
 - Write in **factorised form** y = a(x p)(x q)
 - You will need a third point to find the value of a
- If you have the **vertex** (h, k) then...
 - Write in vertex form $y = a(x h)^2 + k$
 - You will need a second point to find the value of a
- If you have **three random points** $(x_1, y_1), (x_2, y_2) \& (x_3, y_3)$ then...
 - Write in the **general form** $y = ax^2 + bx + c$
 - Substitute the three points into the equation
 - Form and solve a system of three linear equations to find the values of a, b & c

The diagram below shows the graph of y = f(x), where f(x) is a quadratic function.

The intercept with the y-axis and the vertex have been labelled.



Write down an expression for y = f(x).

We have the vertex so use
$$y = a(x-h)^2 + k$$

Vertex $(-1,8): y = a(x-(-1))^2 + 8$
 $y = a(x+1)^2 + 8$

Substitute the second point

$$x = 0$$
, $y = 6$: $6 = a(0+1)^2 + 8$
 $6 = a + 8$
 $a = -2$

$$y = -2(x+1)^2 + 8$$

Rights Reserved

2.2.2 Factorising & Completing the Square

Factorising Quadratics

Why is factorising quadratics useful?

- Factorising gives roots (zeroes or solutions) of a quadratic
- It gives the **x-intercepts** when drawing the graph

How do I factorise a monic quadratic of the form $x^2 + bx + c$?

- A monic quadratic is a quadratic where the coefficient of the x^2 term is 1
- You might be able to spot the factors by inspection
 - Especially if c is a **prime number**
- Otherwise find two numbers *m* and *n* ...
 - A sum equal to b
 - p+q=b
 - A product equal to c
 - pq = c
- Rewrite bx as mx + nx
- Use this to factorise $x^2 + mx + nx + c$
- A shortcut is to write:
 - (x+p)(x+q)

How do I factorise a non-monic quadratic of the form $ax^2 + bx + c$?

- A non-monic quadratic is a quadratic where the coefficient of the x^2 term is not equal to 1
- If a, b & c have a common factor then first factorise that out to leave a quadratic with coefficients that have **no common factors**
- You might be able to spot the factors by **inspection**
 - Especially if a and/or c are **prime numbers**
- Otherwise find two numbers m and n..
 - A sum equal to b
 - m+n=b
 - A product equal to ac
 - = mn = ac
- Rewrite bx as mx + nx
- Use this to factorise $ax^2 + mx + nx + c$
- A shortcut is to write:

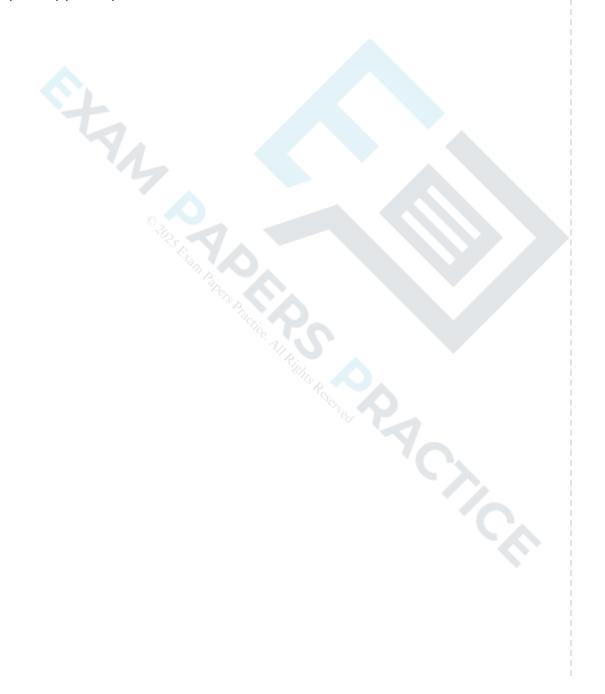
$$\frac{(ax+m)(ax+n)}{a}$$

• Then factorise common factors from numerator to cancel with the a on the denominator

How do I use the difference of two squares to factorise a quadratic of the form $a^2x^2 - c^2$?

ACY C

- The difference of two squares can be used when...
 - There is **no** *x* **term**
 - The constant term is a negative
- Square root the two terms $a^2 x^2$ and c^2
- The two factors are the **sum of square roots** and the **difference of the square roots**
- A shortcut is to write:
 - (ax + c)(ax c)



Factorise fully:

a)
$$x^2 - 7x + 12$$
.

Find two numbers m and n such that

$$m+n=b=-7$$
 $mn=c=12$
 $-4+-3=-7$ $-4\times-3=12$

Split $-7\times$ up and factorise Shortcut

 $x^2-4x-3x+12$ $(x+m)(x+n)$
 $x(x-4)-3(x-4)$ $(x-3)(x-4)$

b) $4x^2 + 4x - 15$.

Find two numbers m and n such that

$$m+n=b=4$$
 $mn=ac=4x-15=-60$
 $10+-6=4$ $10x-6=-60$
Split 4 x up and factorise Shortcut
 $4x^2+10x-6x-15$ $\frac{(ax+m)(ax+n)}{a}$
 $2x(2x+5)-3(2x+5)$ $\frac{(4x+10)(4x-6)}{4}$
 $\frac{(2x-3)(2x+5)}{4}$

c)
$$18 - 50x^2$$
.

Factorise the common factor $2(9-25x^2)$ Use difference of two squares 2(3-5x)(3+5x)

Rights Reserved

Completing the Square

Why is completing the square for quadratics useful?

- Completing the square gives the **maximum/minimum** of a quadratic function
 - This can be used to define the range of the function
- It gives the **vertex** when drawing the graph
- It can be used to solve quadratic equations
- It can be used to derive the quadratic formula

How do I complete the square for a monic quadratic of the form $x^2 + bx + c$?

• Half the value of b and write
$$\left(x + \frac{b}{2}\right)^2$$

This is because
$$\left(x + \frac{b}{2}\right)^2 = x^2 + bx + \frac{b^2}{4}$$

■ Subtract the unwanted $\frac{b^2}{4}$ term and add on the constant c

$$\left(x + \frac{b}{2}\right)^2 - \frac{b^2}{4} + c$$

How do I complete the square for a non-monic quadratic of the form $ax^2 + bx + c$?

• Factorise out the a from the terms involving x

$$a\left(x^2 + \frac{b}{a}x\right) + x$$

- Leaving the c alone will avoid working with lots of fractions
- Complete the square on the quadratic term

• Half
$$\frac{b}{a}$$
 and write $\left(x + \frac{b}{2a}\right)^2$

This is because
$$\left(x + \frac{b}{2a}\right)^2 = x^2 + \frac{b}{a}x + \frac{b^2}{4a^2}$$

Subtract the unwanted
$$\frac{b^2}{4a^2}$$
 term

Multiply by a and add the constant c

$$a \left[\left(x + \frac{b}{2a} \right)^2 - \frac{b^2}{4a^2} \right] + c$$

$$a\left(x + \frac{b}{2a}\right)^2 - \frac{b^2}{4a} + c$$

ACY CHI

Complete the square:

a)
$$x^2 - 8x + 3$$
.

Half b and subtract its square
$$(x-4)^2-4^2+3$$

$$(x-4)^2-13$$

b)
$$3x^2 + 12x - 5$$
.

$$3(x^2+4x)-5$$

$$3((x+2)^2-2^2)-5$$

$$3((x+2)^2-4)-5$$

$$3(x+2)^2-12-5$$

$$3(x+2)^2-17$$

2.2.3 Solving Quadratics

Solving Quadratic Equations

How do I decide the best method to solve a quadratic equation?

- A quadratic equation is of the form $ax^2 + bx + c = 0$
- If it is a calculator paper then use your GDC to solve the quadratic
- If it is a non-calculator paper then...
 - you can always use the quadratic formula
 - you can factorise if it can be factorised with integers
 - you can always complete the square

How do I solve a quadratic equation by the quadratic formula?

- If necessary **rewrite** in the form $ax^2 + bx + c = 0$
- Clearly identify the values of a, b & c
- Substitute the values into the formula

$$X = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

- This is given in the formula booklet
- Simplify the solutions as much as possible

How do I solve a quadratic equation by factorising?

- Factorise to rewrite the quadratic equation in the form a(x-p)(x-q)=0
- Set each factor to zero and **solve**

$$x - p = 0 \Rightarrow x = p$$

$$x - q = 0 \Rightarrow x = q$$

How do I solve a quadratic equation by completing the square?

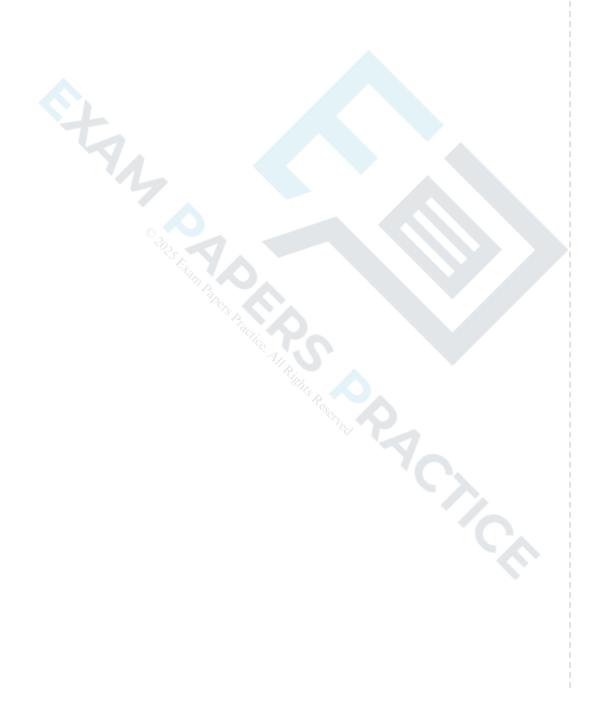
- Complete the square to rewrite the quadratic equation in the form $a(x-h)^2+k=0$
- Get the squared term by itself

$$(x-h)^2 = -\frac{k}{a}$$

- If $\left(-\frac{k}{a}\right)$ is **negative** then there will be **no solutions**
- If $\left(-\frac{k}{a}\right)$ is **positive** then there will be **two values** for x-h

$$x - h = \pm \sqrt{-\frac{k}{a}}$$
Solve for x

$$x = h \pm \sqrt{-\frac{k}{a}}$$



Solve the equations:

a)
$$4x^2 + 4x - 15 = 0$$
.

This can be factorised

$$(2x + 5)(2x - 3) = 0$$

$$2x+5=0$$
 or $2x-3=0$

$$x = -\frac{5}{2} \quad \text{or} \quad x = \frac{3}{2}$$

b)
$$3x^2 + 12x - 5 = 0$$
.

This can not be factorised but $3x^2$ and 12x have a common

factor so complete the square

$$3(x+2)^2 - 17 = 0$$

$$3(x+2)^2 - 17 = 0$$

 $(x+2)^2 = \frac{17}{3}$ Rearrange

$$x + 2 = \pm \sqrt{\frac{17}{3}}$$
 Remember \pm

$$x = -2 \pm \sqrt{\frac{17}{3}}$$

c)
$$7 - 3x - 5x^2 = 0$$
.

This can not be factorised so use formula

Formula booklet

Solutions of a quadratic equation $ax^2 + bx + c = 0 \implies x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} , a \neq 0$

$$x = \frac{-(-3) \pm \sqrt{(-3)^2 - 4(-5)(7)}}{2(-5)}$$

$$=\frac{3 \pm \sqrt{9+140}}{-10}$$

$$x = -\frac{3 \pm \sqrt{144}}{10}$$

Topice. All Rights Reserved

2.2.4 Quadratic Inequalities

Quadratic Inequalities

What affects the inequality sign when rearranging a quadratic inequality?

- The inequality sign is **unchanged** by...
 - Adding/subtracting a term to both sides
 - Multiplying/dividing both sides by a positive term
- The inequality sign **flips** (< changes to >) when...
 - Multiplying/dividing both sides by a negative term

How do I solve a quadratic inequality?

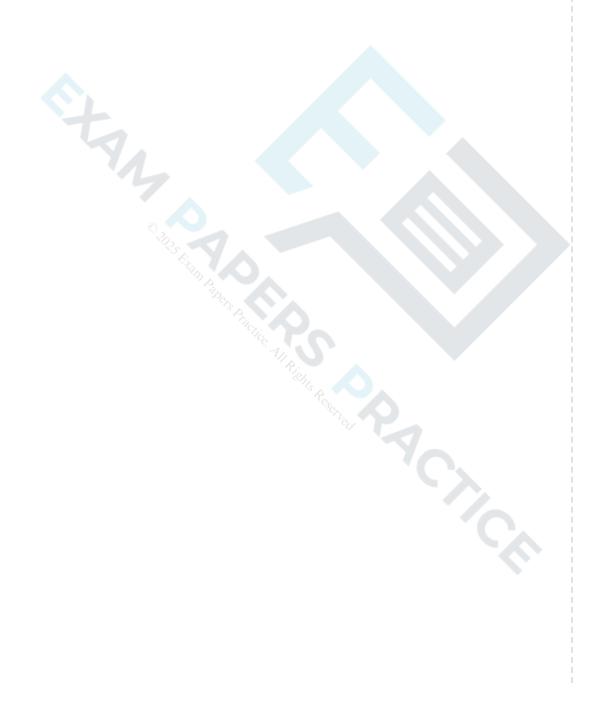
- STEP 1: Rearrange the inequality into quadratic form with a positive squared term
 - $ax^2 + bx + c > 0$
 - $ax^2 + bx + c \ge 0$
 - $ax^2 + bx + c < 0$
 - $ax^2 + bx + c \le 0$
- STEP 2: Find the roots of the quadratic equation
 - Solve $ax^2 + bx + c = 0$ to get x_1 and x_2 where $x_1 < x_2$
- STEP 3: Sketch a graph of the quadratic and label the roots
 - As the squared term is positive it will be **concave up** so "U" shaped
- STEP 4: Identify the region that satisfies the inequality
 - If you want the graph to be above the x-axis then choose the region to be the two intervals outside of the two roots
 - If you want the graph to be **below the x-axis** then choose the region to be the **interval between** the two roots
 - For $ax^2 + bx + c > 0$
 - The solution is $x < x_1$ or $x > x_2$
 - For $ax^2 + bx + c \ge 0$
 - The solution is $x \le x_1$ or $x \ge x_2$
 - For $ax^2 + bx + c < 0$
 - The solution is $x_1 < x < x_2$
 - For $ax^2 + bx + c \le 0$
 - The solution is $x_1 \le x \le x_2$

How do I solve a quadratic inequality of the form $(x - h)^2 < n$ or $(x - h)^2 > n$?

- The safest way is by following the steps above
 - Expand and rearrange
- A common mistake is writing $x h < \pm \sqrt{n}$ or $x h > \pm \sqrt{n}$
 - This is NOT correct!
- The correct solution to $(x h)^2 < n$ is

$$|x-h| < \sqrt{n} \text{ which can be written as } -\sqrt{n} < x-h < \sqrt{n}$$

- The final solution is $h \sqrt{n} < x < h + \sqrt{n}$ The correct solution to $(x h)^2 > n$ is
- - $|x-h| > \sqrt{n} \text{ which can be written as } x-h < -\sqrt{n} \text{ or } x-h > \sqrt{n}$ The final solution is $x < h \sqrt{n} \text{ or } x > h + \sqrt{n}$



Find the set of values which satisfy $3x^2 + 2x - 6 > x^2 + 4x - 2$.

$$(3x^2+2x-6) - (x^2+4x-2) > 0$$
 This way gives $a>0$

$$2x^2-2x-4>0$$
 gives $x^2-x-2>0$ Divide by factor of 2

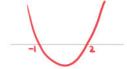
STEP 2: Find the roots

$$x^2 - x - 2 = 0$$

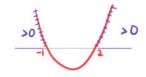
$$(x-2)(x+1)=0$$

$$x=2$$
 or $x=-1$

STEP 3: Sketch



STEP 4: Identify region



$$x < -1$$
 or $x > 2$

2.2.5 Discriminants

Discriminants

What is the discriminant of a quadratic function?

- The discriminant of a quadratic is denoted by the Greek letter ∆ (upper case delta)
- For the quadratic function the discriminant is given by
 - $\Delta = b^2 4ac$
 - This is given in the formula booklet
- The discriminant is the expression that is square rooted in the **quadratic formula**

How does the discriminant of a quadratic function affect its graph and roots?

- If $\Delta > 0$ then $\sqrt{b^2 4ac}$ and $-\sqrt{b^2 4ac}$ are two distinct values
 - The equation $ax^2 + bx + c = 0$ has two distinct real solutions
 - The graph of $y = ax^2 + bx + c$ has two distinct real roots
 - This means the graph **crosses** the x-axis **twice**
- If $\Delta = 0$ then $\sqrt{b^2 4ac}$ and $-\sqrt{b^2 4ac}$ are **both zero**
 - The equation $ax^2 + bx + c = 0$ has one repeated real solution
 - The graph of $y = ax^2 + bx + c$ has one repeated real root
 - This means the graph touches the x-axis at exactly one point
 - This means that the *x*-axis is a tangent to the graph
- If Δ < 0 then $\sqrt{b^2-4ac}$ and $-\sqrt{b^2-4ac}$ are **both undefined**
 - The equation $ax^2 + bx + c = 0$ has no real solutions
 - The graph of $y = ax^2 + bx + c$ has no real roots
 - This means the graph **never touches** the **x-axis**
 - This means that graph is **wholly above** (or **below**) the **x-axis**

Forming equations and inequalities using the discriminant

- Often at least one of the coefficients of a quadratic is **unknown**
 - Questions usually use the letter *k* for the unknown constant
- You will be given a fact about the quadratic such as:
 - The **number of solutions** of the equation
 - The **number of roots** of the graph
- To find the value or range of values of k
 - Find an expression for the discriminant
 - Use $\Delta = b^2 4ac$
 - Decide whether $\Delta > 0$, $\Delta = 0$ or $\Delta < 0$
 - If the question says there are **real roots** but does not specify how many then use $\Delta \ge 0$
 - Solve the resulting equation or inequality

Reserved

A function is given by $f(x) = 2kx^2 + kx - k + 2$, where k is a constant. The graph of y = f(x) has two distinct real roots.

a) Show that $9k^2 - 16k > 0$.

Two distinct real roots
$$\Rightarrow \Delta > 0$$

Formula booklet Discriminant $\Delta = b^2 - 4ac$
 $a = 2k$ $b = k$ $c = (-k+2)$
 $\Delta = k^2 - 4(2k)(-k+2)$
 $= k^2 + 8k^2 - 16k$
 $= 9k^2 - 16k$
 $\Delta > 0 \Rightarrow 9k^2 - 16k > 0$

b) Hence find the set of possible values of k.

Solve the inequality
$$9k^2-16k=0$$
 $k(9k-16)=0$
 $k=0$ or $k=\frac{16}{9}$
 $k<0$ or $k>\frac{16}{9}$