

Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme

Suitable for all boards

Designed to test your ability and thoroughly prepare you

2.2 Quadratic Functions & Graphs

IB Maths - Revision Notes

AA SL

2.2.1 Quadratic Functions

Quadratic Functions & Graphs

What are the key features of quadratic graphs?

- A quadratic graph can be written in the form $y = ax^2 + bx + c$ where $a \neq 0$
- The value of *a* affects the shape of the curve
 - If *a* is **positive** the shape is **concave up** U
 - If *a* is **negative** the shape is **concave down** ∩
- The *y*-intercept is at the point (0, *c*)
- The zeros or roots are the solutions to $ax^2 + bx + c = 0$
 - These can be found by
 - Factorising
 - Quadratic formula
 - Using your GDC
 - These are also called the x-intercepts
 - There can be 0, lor 2 x-intercepts
 - This is determined by the value of the **discriminant**

b

- There is an **axis of symmetry** at $x = -\frac{b}{2a}$
 - This is given in your formula booklet
 - If there are two x-intercepts then the axis of symmetry goes through the midpoint of them
- The **vertex** lies on the axis of symmetry
 - It can be found by completing the square

Copyright The *x*-coordinate is $x = -\frac{1}{2a}$ © 2024 Exam Papers Practice

• The y-coordinate can be found using the GDC or by calculating y when $x = -\frac{b}{2a}$

- If a is positive then the vertex is the minimum point
- If a is negative then the vertex is the maximum point

© 2024 Exam Papers Practice

What are the equations of a quadratic function?

- $f(x) = ax^2 + bx + c$
 - This is the general form
 - It clearly shows the y-intercept (0, c)

• You can find the axis of symmetry by
$$x = -\frac{b}{2a}$$

This is given in the formula booklet

•
$$f(x) = a(x-p)(x-q)$$

- This is the **factorised form**
- It clearly shows the roots (p, 0) & (q, 0)

• You can find the axis of symmetry by
$$x = \frac{p+q}{2}$$

- $f(x) = a(x-h)^2 + k$
 - This is the vertex form

- It clearly shows the vertex (h, k)
- The axis of symmetry is therefore x = h
- It clearly shows how the function can be transformed from the graph $y = x^2$
 - Vertical stretch by scale factor a

How do I find an equation of a quadratic?

- If you have the roots x = p and x = q...
 - Write in factorised form y = a(x-p)(x-q)
 - You will need a third point to find the value of a
- If you have the vertex (h, k) then...
 - Write in vertex form $y = a(x h)^2 + k$
 - You will need a second point to find the value of a
- If you have **three random points** (*x*₁, *y*₁), (*x*₂, *y*₂) & (*x*₃, *y*₃) then...
 - Write in the general form $y = ax^2 + bx + c$
 - Substitute the three points into the equation
 - Form and solve a system of three linear equations to find the values of *a*, *b* & *c*

💽 Exam Tip

- Use your GDC to find the roots and the turning point of a quadratic function
 - You do not need to factorise or complete the square
 - It is good exam technique to sketch the graph from your GDC as part of your working

Copyright © 2024 Exam Papers Practice

Worked example

The diagram below shows the graph of y = f(x), where f(x) is a quadratic function.

The intercept with the y-axis and the vertex have been labelled.

© 2024 Exam Papers Practice

We have the vertex so use
$$y = a(x-h)^{2} + k$$

Vertex (-1,8): $y = a(x - (-1))^{2} + 8$
 $y = a(x + 1)^{2} + 8$

Substitute the second point $x = 0, y = 6: 6 = a (0 + 1)^{2} + 8$ 6 = a + 8 a = -2 $y = -2(x+1)^{2} + 8$

2.2.2 Factorising & Completing the Square

Factorising Quadratics

Why is factorising quadratics useful?

- Factorising gives roots (zeroes or solutions) of a quadratic
- It gives the *x*-intercepts when drawing the graph

How do I factorise a monic quadratic of the form $x^2 + bx + c$?

- A monic quadratic is a quadratic where the coefficient of the x² term is 1
- You might be able to spot the factors by inspection
- Especially if *c* is a **prime number**Otherwise find two numbers *m* and *n*..
 - Asumequal to b
 - p + q = b
 - A product equal to c

$$pq = c$$

- Rewrite *bx* as *mx*+*nx*
- Use this to factorise $x^2 + mx + nx + c$
- A shortcut is to write:

$$(x+p)(x+q)$$

How do I factorise a non-monic quadratic of the form $ax^2 + bx + c$?

- A non-monic quadratic is a quadratic where the coefficient of the x^2 term is not equal to 1
- If a, b & chave a common factor then first factorise that out to leave a quadratic with coefficients

Copyrighthat have no common factors

- © 2014 You might be able to spot the factors by inspection
 - Especially if a and/or c are prime numbers
 - Otherwise find two numbers *m* and *n*..
 - A sum equal to b

 $\bullet m + n = b$

A product equal to ac

$$= mn = ac$$

- Rewrite *bx* as *mx*+*nx*
- Use this to factorise $ax^2 + mx + nx + c$
- A shortcut is to write:

$$(ax + m)(ax + n)$$

а

Then factorise common factors from numerator to cancel with the a on the denominator

How do luse the difference of two squares to factorise a quadratic of the form a^2x^2 $-c^{2}$?

- The difference of two squares can be used when...
 - There is no xterm
 - The constant term is a negative
- Square root the two terms $a^2 x^2$ and c^2
- The two factors are the sum of square roots and the difference of the square roots
- A shortcut is to write:
 - (ax + c)(ax c)

🖸 Exam Tip

• You can deduce the factors of a quadratic function by using your GDC to find the solutions of a quadratic equation

• Using your GDC, the quadratic equation $6x^2 + x - 2 = 0$ has solutions $x = -\frac{2}{3}$ and

 $x = \frac{1}{2}$

• Therefore the factors would be (3x+2) and (2x-1)

1

• i.e.
$$6x^2 + x - 2 = (3x + 2)(2x - 1)$$

🖉 Worked example

© 2024 Exam Papers Practice

Find two numbers m and n such that

$$m+n = b = -7$$
 mn = c = 12
 $-4 + -3 = -7$ $-4 \times -3 = 12$
Split $-7x$ up and factorise Shortcut
 $x^{2} - 4x - 3x + 12$ $(x+m)(x+n)$
 $x(x-4) - 3(x-4)$ $(x-3)(x-4)$

 $4x^2 + 4x - 15$ b)

Completing the Square

Why is completing the square for quadratics useful?

- Completing the square gives the maximum/minimum of a quadratic function
- This can be used to define the range of the function
- It gives the vertex when drawing the graph
- It can be used to solve quadratic equations
- It can be used to derive the quadratic formula

How do I complete the square for a monic quadratic of the form $x^2 + bx + c$?

• Half the value of *b* and write $\left(x + \frac{b}{2}\right)^2$

• This is because
$$\left(x + \frac{b}{2}\right)^2 = x^2 + bx + \frac{b^2}{4}$$

• Subtract the unwanted $\frac{b^2}{4}$ term and add on the constant c

$$\left(x+\frac{b}{2}\right)^2 - \frac{b^2}{4} + c$$

How do I complete the square for a non-monic quadratic of the form $ax^2 + bx + c$?

• Factorise out the a from the terms involving x

•
$$a\left(x^2 + \frac{b}{a}x\right) + x$$

- Leaving the calone will avoid working with lots of fractions
- Complete the square on the quadratic term

Half $\frac{b}{a}$ and write $\left(x + \frac{b}{2a}\right)^2$ **Def 5** Copyright • This is because $\left(x + \frac{b}{2a}\right)^2 = x^2 + \frac{b}{a}x + \frac{b^2}{4a^2}$ **Practice**

• Subtract the unwanted $\frac{b^2}{4a^2}$ term

Multiply by a and add the constant c

•
$$a\left[\left(x+\frac{b}{2a}\right)^2-\frac{b^2}{4a^2}\right]+c$$

$$a\left(x+\frac{b}{2a}\right)^2 - \frac{b^2}{4a} + c$$

🖸 Exam Tip

 Some questions may not use the phrase "completing the square" so ensure you can recognise a quadratic expression or equation written in this form

•
$$a(x-h)^2 + k(=0)$$

2.2.3 Solving Quadratics

Solving Quadratic Equations

How do I decide the best method to solve a quadratic equation?

- A quadratic equation is of the form $ax^2 + bx + c = 0$
- If it is a calculator paper then use your GDC to solve the quadratic
- If it is a non-calculator paper then...
 - you can always use the quadratic formula
 - you can factorise if it can be factorised with integers
 - you can always **complete the square**

How do I solve a quadratic equation by the quadratic formula?

- If necessary **rewrite** in the form $ax^2 + bx + c = 0$
- Clearly identify the values of *a*, *b* & *c*
- Substitute the values into the formula

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

This is given in the formula booklet

• Simplify the solutions as much as possible

How do I solve a quadratic equation by factorising?

- Factorise to rewrite the quadratic equation in the form a(x-p)(x-q) = 0
- Set each factor to zero and solve
 - $x p = 0 \Rightarrow x = p$
 - $x q = 0 \Rightarrow x = q$

How do I solve a quadratic equation by completing the square?

- ^{© 20}²⁴ Complete the square to rewrite the quadratic equation in the form $a(x-h)^2 + k = 0$
 - Get the squared term by itself

$$(x-h)^2 = -\frac{k}{a}$$

• If
$$\left(-\frac{k}{a}\right)$$
 is **negative** then there will be **no solutions**

Exam Papers Practice
• If
$$\left(-\frac{k}{a}\right)$$
 is positive then there will be two values for $x - h$
• $x - h = \pm \sqrt{-\frac{k}{a}}$
• Solve for x
• $x = h \pm \sqrt{-\frac{k}{a}}$

💽 Exam Tip

- When using the quadratic formula with awkward values or fractions you may find it easier to deal with the " $b^2 4ac$ " (discriminant) first
 - This can help avoid numerical and negative errors, improving accuracy

Worked example
Solve the equations:
a)
$$4x^2 + 4x - 15 = 0$$
.
This can be factorised
 $(2x + 5)(2x - 3) = 0$
 $2x + 5 = 0$ or $2x - 3 = 0$
 $x = -\frac{5}{2}$ or $x = -\frac{3}{2}$
Practice

© 2024 b) am $P_{3x^2} + P_{12x} = 5 = 0$.

This can not be factorised but $3x^2$ and 12x have a common factor so complete the square $3(x+2)^2 - 17 = 0$ $(x+2)^2 = \frac{17}{3}$ Rearrange $x+2 = \pm \sqrt{\frac{17}{3}}$ Remember \pm $x = -2 \pm \sqrt{\frac{17}{3}}$

c)
$$7 - 3x - 5x^2 = 0$$
.

Exam Papers Practice

© 2024 Exam Papers Practice

2.2.4 Quadratic Inequalities

Quadratic Inequalities

What affects the inequality sign when rearranging a quadratic inequality?

- The inequality sign is **unchanged** by...
 - Adding/subtracting a term to both sides
 - Multiplying/dividing both sides by a positive term
- The inequality sign **flips** (< changes to >) when...
 - Multiplying/dividing both sides by a negative term

How do I solve a quadratic inequality?

- STEP 1: Rearrange the inequality into quadratic form with a positive squared term
 - $ax^2 + bx + c > 0$
 - $ax^2 + bx + c \ge 0$
 - $ax^2 + bx + c < 0$
 - $ax^2 + bx + c \le 0$
- **STEP 2**: Find the **roots** of the quadratic equation
 - Solve $ax^2 + bx + c = 0$ to get x_1 and x_2 where $x_1 < x_2$
- STEP 3: Sketch a graph of the quadratic and label the roots
 - As the squared term is positive it will be **concave up** so "U" shaped
- STEP 4: Identify the region that satisfies the inequality
 - If you want the graph to be above the x-axis then choose the region to be the two intervals outside of the two roots
 - If you want the graph to be below the x-axis then choose the region to be the interval between the two roots
- Copyright For $ax^2 + bx + c > 0$
- \bigcirc 2024 Exam Patheophytics is $x \neq x$
- © 2024 Exam Pathesolution is $x < x_1$ or $x > x_2$
 - For $ax^2 + bx + c \ge 0$
 - The solution is *x* ≤ *x*₁ or *x* ≥ *x*₂
 - For ax² + bx + c < 0</p>
 - The solution is $x_1 < x < x_2$
 - For $ax^2 + bx + c \le 0$
 - The solution is $x_1 \le x \le x_2$

How do I solve a quadratic inequality of the form $(x-h)^2 < nor (x-h)^2 > n$?

- The safest way is by following the steps above
 - Expand and rearrange
- A common mistake is writing $x h < \pm \sqrt{n}$ or $x h > \pm \sqrt{n}$

- This is **NOT correct**!
- The correct solution to (x h)² < n is</p>
 - $|x-h| < \sqrt{n}$ which can be written as $-\sqrt{n} < x-h < \sqrt{n}$
 - The final solution is $h \sqrt{n} < x < h + \sqrt{n}$
- The correct solution to (x h)² > n is
 - $|x-h| > \sqrt{n}$ which can be written as $x h < -\sqrt{n}$ or $x h > \sqrt{n}$
 - The final solution is $x < h \sqrt{n}$ or $x > h + \sqrt{n}$

💽 Exam Tip

- It is easiest to sketch the graph of a quadratic when it has a positive X^2 term, so rearrange first if necessary
- Use your GDC to help select the correct region(s) for the inequality
- Some makes/models of GDC may have the ability to solve inequalities directly
 - However unconventional notation may be used to display the answer (e.g. 6 > x > 3 rather than 3 < x < 6)
 - The safest method is to always sketch the graph

Exam Papers Practice

© 2024 Exam Papers Practice

2.2.5 Discriminants

Discriminants

What is the discriminant of a quadratic function?

- The discriminant of a quadratic is denoted by the Greek letter △ (upper case delta)
- For the quadratic function the discriminant is given by
 - $\Delta = b^2 4ac$
 - This is given in the formula booklet
- The discriminant is the expression that is square rooted in the **quadratic formula**

How does the discriminant of a quadratic function affect its graph and roots?

- If $\triangle > 0$ then $\sqrt{b^2 4ac}$ and $-\sqrt{b^2 4ac}$ are two distinct values
 - The equation $ax^2 + bx + c = 0$ has two distinct real solutions
 - The graph of $y = ax^2 + bx + c$ has two distinct real roots
 - This means the graph crosses the x-axis twice
- If $\triangle = 0$ then $\sqrt{b^2 4ac}$ and $-\sqrt{b^2 4ac}$ are **bothzero**
 - The equation $ax^2 + bx + c = 0$ has one repeated real solution
 - The graph of $y = ax^2 + bx + c$ has one repeated real root
 - This means the graph touches the *x*-axis at exactly one point

ractice

• This means that the *x*-axis is a tangent to the graph

If
$$\Delta < 0$$
 then $\sqrt{b^2 - 4ac}$ and $-\sqrt{b^2 - 4ac}$ are **both undefined**

The equation
$$ax^2 + bx + c = 0$$
 has no real solutions

Copyright The graph of $y = ax^2 + bx + c$ has no real roots

- © 2024 Exam Papers Practice This means the graph never touches the *x*-axis
 - This means that graph is **wholly above** (or **below**) the *x*-axis

© 2024 Exam Papers Practice

Forming equations and inequalities using the discriminant

- Often at least one of the coefficients of a quadratic is **unknown**
 - Questions usually use the letter *k* for the unknown constant
- You will be given a fact about the quadratic such as:
 - The number of solutions of the equation
 - The **number of roots** of the graph
- To find the **value or range of values** of *k*
 - Find an expression for the discriminant
 - Use $\Delta = b^2 4ac$
 - Decide whether $\Delta > 0$, $\Delta = 0$ or $\Delta < 0$
 - If the question says there are **real roots** but does not specify how many then use $\Delta \ge 0$
 - Solve the resulting equation or inequality

😧 Exam Tip

- Questions will rarely use the word discriminant so it is important to recognise when its use is required
 - Look for
 - a number of roots or solutions being stated
 - whether and/or how often the graph of a quadratic function intercepts the X-axis
- Be careful setting up inequalities that concern "two real roots" ($\Delta \ge 0$) as opposed to "two real distinct roots" ($\Delta \ge 0$)

