Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme
Suitable for all boards
Designed to test your ability and thoroughly prepare you

2.2 Quadratic Functions \& Graphs

AA SL

2.2.1 Quadratic Functions

Quadratic Functions \& Graphs

What are the key features of quadratic graphs?

- A quadratic graph can be written in the form $y=a x^{2}+b x+c$ where $a \neq 0$
- The value of a affects the shape of the curve
- If ais positive the shape is concave up u
- If ais negative the shape is concave down \cap
- The \boldsymbol{y}-intercept is at the point $(0, c)$
- The zeros or roots are the solutions to $a x^{2}+b x+c=0$
- These can be found by
- Factorising
- Quadratic formula
- Usingyour GDC
- These are also called the x-intercepts
- There canbe 0,1or2x-intercepts
- This is determined by the value of the discriminant
- There is an axis of symmetry at $X=-\frac{b}{2 a}$
- This is given in your formula booklet
- If there are two x-intercepts then the axis of symmetry goes through the midpoint of them
- The vertex lies on the axis of symmetry
- It can be found bycompleting the square
- The x-coordinate is $x=-\frac{b}{2 a}$
- The y-coordinate can be found using the GDC or by calculating y when $x=-\frac{b}{2 a}$
- If ais positive then the vertex is the minimumpoint
- If ais negative then the vertex is the maximumpoint

Copyright

© 2024 Exam Papers Practice

What are the equations of a quadratic function?

- $f(x)=a x^{2}+b x+c$
- This is the general form
- It clearlyshows the y-intercept ($0, c$)
- You can find the axis of symmetry by $X=-\frac{b}{2 a}$
- This is given in the formula booklet
- $f(x)=a(x-p)(x-q)$
- This is the factorised form
- It clearlyshows the roots $(p, 0) \&(q, 0)$
- You can find the axis of symmetry by $x=\frac{p+q}{2}$
- $f(x)=a(x-h)^{2}+k$
- This is the vertexform
- It clearly shows the vertex (h, k)
- The axis of symmetry is therefore $x=h$
- It clearly shows how the function can be transformed from the graph $y=x^{2}$
- Vertical stretchbyscale factora
- Translation byvector $\binom{h}{k}$

Howdo Ifind an equation of a quadratic?

- If you have the roots $x=p$ and $x=q \ldots$
- Write in factorised form $y=a(x-p)(x-q)$
- You will need a third point to find the value of a
- If you have the vertex (h, k) then..
- Write in vertex form $y=a(x-h)^{2}+k$
- You will need a second point to find the value of a
- If you have three rand om points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \&\left(x_{3}, y_{3}\right)$ then...
- Write in the general form $y=a x^{2}+b x+c$
- Substitute the three points into the equation
- Form and solve a system of three linear equations to find the values of $a, b \& c$

(9) Exam Tip

- Use your GDC to find the roots and the turning point of a quadratic function
- Youdo not need to factorise orcomplete the square
- It is good exam technique to sketch the graph from your GDC as part of your working

Worked example

The diagram below shows the graph of $y=f(x)$, where $f(x)$ is a quadratic function.
The intercept with the y-axis and the vertex have been labelled.

Write down an expression for $y=f(x)$.

Copyright

© 2024 Exam Papers Practice
We have the vertex so use $y=a(x-h)^{2}+k$
$\operatorname{Vertex}(-1,8): y=a(x-(-1))^{2}+8$

$$
y=a(x+1)^{2}+8
$$

Substitute the second point

$$
x=0, y=6: \quad b=a(0+1)^{2}+8
$$

$$
b=a+8
$$

$$
a=-2
$$

$$
y=-2(x+1)^{2}+8
$$

2.2.2 Factorising \& Completing the Square

Factorising Quadratics

Why is factorising quadratics useful?

- Factorising gives roots (zeroes or solutions) of a quadratic
- It gives the \boldsymbol{x}-intercepts when drawing the graph

Howdo Ifactorise a monic quadratic of the form $x^{2}+b x+c$?

- A monic quadratic is a quadratic where the coefficient of the x^{2} term is 1
- You might be able to spot the factors byinspection
- Especially if c is a prime number
- Otherwise find two numbers mand n..
- A sum equal to b
- $p+q=b$
- A product equal to c
- $p q=c$
- Rewrite bxas $m x+n x$
- Use this to factorise $x^{2}+m x+n x+c$
- A shortcut is to write:
- $(x+p)(x+q)$

Howdolfactorise a non-monic quadratic of the form $a x^{2}+b x+c$?

- Anon-monic quadratic is a quadratic where the coefficient of the x^{2} term is not equal to 1
 that have no commonfactors
- You might be able to spot the factors by inspection
- Especially if a and/or care prime numbers
- Otherwise find two numbers mand n..
- A sum equal to b
- $m+n=b$
- A product equal to $a c$
- $m n=a c$
- Rewrite bxas $m x+n x$
- Use this to factorise $a x^{2}+m x+n x+c$
- A shortcut is to write:
- $\frac{(a x+m)(a x+n)}{a}$
- Then factorise commonfactors from numerator to cancel with the a on the denominator

How do luce the difference of two squares to factorise a quadratic of the form $a^{2} \boldsymbol{x}^{2}$ $-c^{2}$?

- The difference of two squares can be used when...
- There is no x term
- The constant term is a negative
- Square root the two terms $a^{2} X^{2}$ and c^{2}
- The two factors are the sum of square roots and the difference of the square roots
- A shortcut is to write:
- $(a x+c)(a x-c)$

- Exam Tip

- You can deduce the factors of a quadratic function by using yo ur GDC to find the solutions of a quadratic equation
- Using yo ur GDC, the quadratic equation $6 x^{2}+x-2=0$ has solutions $X=-\frac{2}{3}$ and

$$
x=\frac{1}{2}
$$

- Therefore the factors would be $(3 x+2)$ and $(2 x-1)$
- i.e. $6 x^{2}+x-2=(3 x+2)(2 x-1)$

Worked example

Factorise fully:
a) $\quad x^{2}-7 x+12$.

$$
\text { Find two numbers } m \text { and } n \text { such that }
$$

$$
\begin{array}{ll}
m+n=b=-7 & m n=c=12 \\
-4+-3=-7 & -4 \times-3=12
\end{array}
$$

Split $-7 x$ up and factorise Shortcut

$$
\begin{array}{ll}
x^{2}-4 x-3 x+12 & (x+m)(x+n) \\
x(x-4)-3(x-4) & (x-3)(x-4)
\end{array}
$$

$$
(x-3)(x-4)
$$

b) $\quad 4 x^{2}+4 x-15$.

Exam Papers Practice

Find two numbers m and n such that $m+n=b=4 \quad m n=a c=4 x-15=-60$ $10+-6=4 \quad 10 \times-6=-60$ Split $4 x$ up and factorise Shortcut
$4 x^{2}+10 x-6 x-15$
$\frac{(a x+m)(a x+n)}{a}$
$2 x(2 x+5)-3(2 x+5)$
$(2 x-3)(2 x+5)$
$\frac{(4 x+10)(4 x-6)}{4}$
$\frac{2(2 x+5) x(2 x-3)}{4}$
$(2 x-3)(2 x+5)$
c) $18-50 x^{2}$.

Factorise the common factor
$2\left(9-25 x^{2}\right)$
Exar
Wee difference of two squares
$2(3-5 x)(3+5 x)$

Completing the Square

Why is completing the square for quadratics useful?

- Completing the square gives the maximum/minimum of a quadratic function
- This can be used to define the range of the function
- It gives the vertex when drawing the graph
- It can be used to solve quadratic equations
- It can be used to derive the quadratic formula

How do Icomplete the square for a monic quadratic of the form $x^{2}+b x+c$?

- Half the value of band write $\left(x+\frac{b}{2}\right)^{2}$
- This is because $\left(x+\frac{b}{2}\right)^{2}=x^{2}+b x+\frac{b^{2}}{4}$
- Subtract the unwanted $\frac{b^{2}}{4}$ term and add on the constant c
- $\left(x+\frac{b}{2}\right)^{2}-\frac{b^{2}}{4}+c$

Howdo lcomplete the square for a non-monic quadratic of the form $a x^{2}+b x+c$?

- Factorise out the afrom the terms involving x
- $a\left(x^{2}+\frac{b}{a} x\right)+x$
- Leaving the calone will avoid working with lots of fractions
- Complete the square on the quadratic term
- Half $\frac{b}{a}$ and write $\left(x+\frac{b}{2 a}\right)^{2}$
- This is because $\left(x+\frac{b}{2 a}\right)^{2}=x^{2}+\frac{b}{a} x+\frac{b^{2}}{4 a^{2}}$
- Subtract the unwanted $\frac{b^{2}}{4 a^{2}}$ term
- Multiply by a and add the constant c
- $a\left[\left(x+\frac{b}{2 a}\right)^{2}-\frac{b^{2}}{4 a^{2}}\right]+c$
- $a\left(x+\frac{b}{2 a}\right)^{2}-\frac{b^{2}}{4 a}+c$

(? Exam Tip

- Some questions maynot use the phrase "completing the square" so ensure you can reco gnise a quad ratic expression or equation written in this form
- $a(x-h)^{2}+k(=0)$

Worked example

Complete the square:
a) $x^{2}-8 x+3$.

Half b and subtract its square
$(x-4)^{2}-4^{2}+3$
$(x-4)^{2}-13$
b) $\quad 3 x^{2}+12 x-5$.

Factorise the 3 from the x terms $3\left(x^{2}+4 x\right)-5$
Complete the square on $x^{2}+4 x$
$3\left((x+2)^{2}-2^{2}\right)-5$
Simplify
$3\left((x+2)^{2}-4\right)-5$
$3(x+2)^{2}-12-5$
$3(x+2)^{2}-17$

2.2.3 Solving Quadratics

Solving Quadratic Equations

Howdo Idecide the best method to solve a quadratic equation?

- A quadratic equation is of the form $a x^{2}+b x+c=0$
- If it is a calculator paperthen use your GDC to solve the quadratic
- If it is a non-calculator paper then...
- youcan always use the quadratic formula
- youcan factorise if it can be factorised with integers
- you can always complete the square

Howdolsolve a quadratic equation by the quadratic formula?

- If necessary rewrite in the form $a x^{2}+b x+c=0$
- Clearly identify the values of $a, b \& c$
- Substitute the values into the formula
- $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
- This is given in the formula booklet
- Simplify the solutions as much as possible

Howdolsolve a quadratic equation by factorising?

- Factorise to rewrite the quadratic equation in the form $a(x-p)(x-q)=0$
- Set each factorto zero and solve
- $x-p=0 \Rightarrow x=p$
- $x-q=0 \Rightarrow x=q$

How do Isolve a quadratic equation by completing the square?

- Complete the square to rewrite the quad ratic equation in the form $a(x-h)^{2}+k=0$
- Get the squared term byits elf
- $(x-h)^{2}=-\frac{k}{a}$
- If $\left(-\frac{k}{a}\right)$ is negative then there will be no solutions
- If $\left(-\frac{k}{a}\right)$ is positive then there will be two values for $X-h$
- $x-h= \pm \sqrt{-\frac{k}{a}}$
- Solve for x
- $x=h \pm \sqrt{-\frac{k}{a}}$

- Exam Tip

- When using the quadratic formula with awkward values or fractions you may find it easier to deal with the " $b^{2}-4 a c$ " (discriminant) first
- This can help avoid numeric al and negative errors, improving accuracy

Worked example

Solve the equations:
a) $4 x^{2}+4 x-15=0$.

This can be factorised
$(2 x+5)(2 x-3)=0$
$2 x+5=0$ or $2 x-3=0$

- -1 $x=-\frac{5}{2} \quad$ or $\quad x=\frac{3}{2}$

Copyright
b) am $3 x^{2}+12 x-5=0$.

This can not be factorised but $3 x^{2}$ and $12 x$ have a common
factor so complete the square
$3(x+2)^{2}-17=0$
$(x+2)^{2}=\frac{17}{3} \leadsto$ Rearrange
$x+2= \pm \sqrt[4]{\frac{17}{3}}$ Remember \pm
$x=-2 \pm \sqrt{\frac{17}{3}}$
c) $7-3 x-5 x^{2}=0$.

Exam Papers Practice

This can not be factorised so use formula

$$
\begin{aligned}
& a=-5 \quad b=-3 \quad c=7 \\
& x=\frac{-(-3) \pm \sqrt{(-3)^{2}-4(-5)(7)}}{2(-5)}
\end{aligned}
$$

$$
=\frac{3 \pm \sqrt{9+140}}{-10}
$$

2.2.4 Quadratic Inequalities

Quadratic Inequalities

What affects the inequality sign when rearranging a quadratic inequality?

- The inequalitysign is unchanged by...
- Adding/subtracting a term to both sides
- Multiplying/dividing both sides by a positive term
- The inequality sign flips (<changes to >) when...
- Multiplying/dividing both sides by a negative term

Howdo Isolve a quadratic inequality?

- STEP 1: Rearrange the inequality into quadratic form with a positive squared term
- $a x^{2}+b x+c>0$
- $a x^{2}+b x+c \geq 0$
- $a x^{2}+b x+c<0$
- $a x^{2}+b x+c \leq 0$
- STEP 2: Find the roots of the quadratic equation
- Solve $a x^{2}+b x+c=0$ to get x_{1} and x_{2} where $x_{1}<x_{2}$
- STEP 3: Sketch a graph of the quadratic and label the roots
- As the squared term is positive it will be concave up so "U" shaped
- STEP 4: Identify the regio n that satisfies the inequality
- If you want the graph to be above the \boldsymbol{x}-axis then choose the region to be the two intervals outside of the two roots
- If you want the graph to be below the \boldsymbol{x}-axis then choose the region to be the interval between the two roots
- For $a x^{2}+b x+c>0$
xam The solution is $\boldsymbol{x}\left\langle\boldsymbol{x}_{\mathbf{1}}\right.$ or $\left.\boldsymbol{x}\right\rangle \boldsymbol{x}_{\mathbf{2}}$
- For $a x^{2}+b x+c \geq 0$
- The solution is $\boldsymbol{x} \leq \boldsymbol{x}_{\mathbf{1}}$ or $\boldsymbol{x} \geq \boldsymbol{x}_{\mathbf{2}}$
- For $a x^{2}+b x+c<0$
- The solution is $\boldsymbol{x}_{\mathbf{1}}<\boldsymbol{x}<\boldsymbol{x}_{\mathbf{2}}$
- For $a x^{2}+b x+c \leq 0$
- The solution is $x_{1} \leq \boldsymbol{x} \leq \boldsymbol{x}_{2}$

How do Isolve a quadratic inequality of the form $(x-h)^{2}<n o r(x-h)^{2}>n$?

- The safest way is by following the steps above
- Expand and rearrange
- Acommon mistake is writing $x-h< \pm \sqrt{n}$ or $x-h> \pm \sqrt{n}$
- This is NOT correct!
- The correct solution to $(x-h)^{2}<n$ is
- $|x-h|<\sqrt{n}$ which can be written as $-\sqrt{n}<x-h<\sqrt{n}$
- The final solution is $h-\sqrt{n}<x<h+\sqrt{n}$
- The correct solution to $(x-h)^{2}>n$ is
- $|x-h|>\sqrt{n}$ which can be written as $x-h<-\sqrt{n}$ or $x-h>\sqrt{n}$
- The final solution is $x<h-\sqrt{n}$ or $x>h+\sqrt{n}$

(9) Exam Tip

- It is easiest to sketch the graph of a quadratic when it has a positive X^{2} term, so rearrange first if necessary
- Use your GDC to help select the correct region(s) forthe inequality
- Some makes/models of GDC may have the ability to solve inequalities directly
- Howeverunconventional notation maybe used to displaythe answer(e.g. $6>x>3$ ratherthan $3<x<6$)
- The safest method is to always sketch the graph

© 2024 Exam Papers Practice

Exam Papers Practice

Worked example

Find the set of values which satisfy $3 x^{2}+2 x-6>x^{2}+4 x-2$.
$S_{\text {TED }} 1$: Rearrange

$$
\left(3 x^{2}+2 x-6\right)-\left(x^{2}+4 x-2\right)>0 \quad \text { This way }
$$

$$
2 x^{2}-2 x-4>0 \quad \text { gives } a>0
$$

$$
x^{2}-x-2>0 \text { Divide by factor of } 2
$$

$S_{\text {TED }} 2$: Find the roots

$$
\begin{aligned}
& x^{2}-x-2=0 \\
& (x-2)(x+1)=0
\end{aligned}
$$

$$
x=2 \text { or } x=-1
$$

Step 3: Sketch

Step 4: Identify region
© 2024 Exam Papers Practice

$$
x<-1 \text { or } x>2
$$

2.2.5 Discriminants

Discriminants

What is the discriminant of a quadratic function?

- The discriminant of a quadratic is denoted by the Greek letter Δ (upper case delta)
- For the quadratic function the discriminant is given by
- $\Delta=b^{2}-4 a c$
- This is given in the formula booklet
- The discriminant is the expression that is square rooted in the quadratic formula

Howdoes the discriminant of a quadratic function affect its graph and roots?

- If $\Delta>0$ then $\sqrt{b^{2}-4 a c}$ and $-\sqrt{b^{2}-4 a c}$ are two distinct values
- The equation $a x^{2}+b x+c=0$ has two distinct real solutions
- The graph of $y=a x^{2}+b x+c$ has two distinct realroots
- This means the graph crosses the x-axis twice
- If $\Delta=0$ then $\sqrt{b^{2}-4 a c}$ and $-\sqrt{b^{2}-4 a c}$ are bothzero
- The equation $a x^{2}+b x+c=0$ has one repeated real solution
- The graph of $y=a x^{2}+b x+c$ has one repeated real root
- This means the graph touches the x-axis at exactly one point
- This means that the x-axis is a tangent to the graph
- If $\Delta<0$ then $\sqrt{b^{2}-4 a c}$ and $-\sqrt{b^{2}-4 a c}$ are bothundefined
- The equation $a x^{2}+b x+c=0$ has no real solutions
- The graph of $y=a x^{2}+b x+c$ has no real roots
- This means the graph never touches the x-axis
- This means that graph is wholly above (orbelow) the \boldsymbol{x}-axis

$$
\text { IF } b^{2}-4 a c>0 \quad \text { IF } b^{2}-4 a c=0
$$

IF $b^{2}-4 a c<0$

Forming equations and inequalities using the discriminant

- Often at least one of the coefficients of a quadratic is unknown
- Questions usuallyuse the letter kforthe unknown constant
- You will be given a fact about the quadratic such as:
- The number of solutions of the equation
- The number of roots of the graph
- To find the value or range of values of k
- Find an expression for the discriminant
- Use $\Delta=b^{2}-4 a c$
- Decide whether $\Delta>0, \Delta=0$ or $\Delta<0$
- If the question says there are real roots but does not specify how manythen use $\Delta \geq 0$
- Solve the resulting equation or inequality

(9) Exam Tip

- Questions will rarely use the word discriminant so it is important to recognise when its use is required
- Lookfor
- a number of roots or solutions being stated
- whether and/or how often the graph of a quadratic function intercepts the \boldsymbol{X}-axis
- Be careful setting up inequalities that concern "two real roots" ($\Delta \geq 0$) as opposed to "two real distinct roots" ($\Delta>0$)

Worked example

A function is given by $f(x)=2 k x^{2}+k x-k+2$, where k is a constant. The graph of $y=f(x)$ has two distinct real roots.
a) Show that $9 k^{2}-16 k>0$.
$T_{\text {wo }}$ distinct real roots $\Rightarrow \Delta>0$
Formula booklet Discriminant $\quad \Delta=b^{2}-4 a c$
$a=2 k \quad b=k \quad c=(-k+2)$
$\Delta=k^{2}-4(2 k)(-k+2)$
$=k^{2}+8 k^{2}-16 k$
$=9 k^{2}-16 k$
$\Delta>0 \quad \Rightarrow 9 k^{2}-16 k>0$
b) Hence find the set of possible value of \boldsymbol{k}.

Solve the inequality
$9 k^{2}-16 k=0$
$k(9 k-16)=0$
$k=0$ or $k=\frac{16}{9}$

$$
k<0 \quad \text { or } \quad k>\frac{16}{9}
$$

