


### 2.2 Further Functions & Graphs

### **Question Paper**



**Exam Papers Practice** 

To be used by all students preparing for DP IB Maths Al SL Students of other boards may also find this useful



### Question la

A function is defined by f(x) = 54x - 13, -2 < x < 20.

Find the value of  $f\left(\frac{5}{2}\right)$ .

[1 mark]

### Question 1b

Write down the range of f(x).

[2 marks]

### Question 1c

Find the value of  $f^{-1}(122)$ .



[2 marks]

### **Exam Papers Practice**

#### Question 1d

Write down the range of the inverse function.

[1 mark]



### Question 2a

Consider the function f(x) = -6x - 3. The domain of f(x) is  $-5 \le x \le 3$ .

Find

(i)

f(2)

(ii)

x when f(x) = 15.

[2 marks]

### Question 2b

Find the range of f(x).

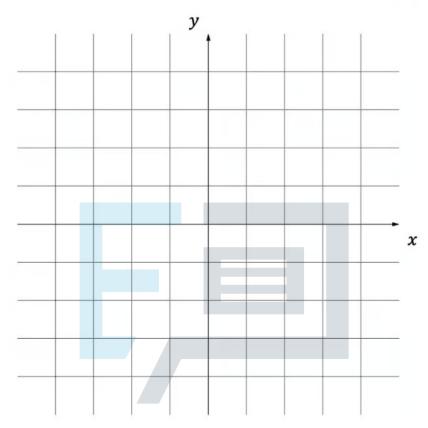


[3 marks]

## **Exam Papers Practice**

### Question 2c

Write down the domain of the inverse function.


[1 mark]



### Question 3a

Consider the function  $g(x) = \sqrt{4-x}$ .

Sketch the graph of the function g(x), labelling the x and y intercepts.



Exam Papers Practic [3marks]



### Question 3b

Find

- g(-5)
- (ii)

 $x \text{ when } g(x) = \frac{1}{2}.$ 

[2 marks]

### Question 3c

Find

(i)

the maximum possible domain of the function g(x)

(ii)

the range of the function g(x) that corresponds to the domain found in part (c) (i).

[2 marks]

### **Exam Papers Practice**

### Question 4a

Consider the functions  $f(x) = -x^5 + 2020$  and  $g(x) = \frac{1}{\sqrt{(1-x)^3}} - 2$ .

Find the coordinates of the y-intercepts for the graph of

- (i)
- f
- (ii)
- g.

[2 marks]



### Question 4b

Find the coordinates of the x-intercepts for the graph of

- (i)
- f
- (ii)

g.

[2 marks]



### **Question 4c**

For the graph of g, find the equation of

(i)

the vertical asymptote

(ii) the horizontal asymptote.

### **Papers Practice**

[3 marks]

### Question 5a

Consider the functions  $f(x) = x^{-4} - 2021$  and  $g(x) = 2 - \sqrt{x-1}$ . Find the maximum possible domain and range of g.



[2 marks]

### Question 5b

For the graph of f, find the equation of

(i)

the vertical asymptote

(ii)

the horizontal asymptote.



[3 marks]

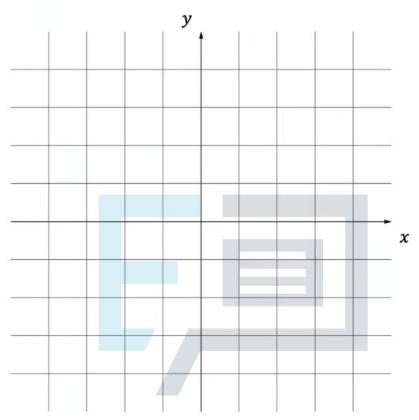
### Question 5c

Find the coordinates of the *x*-intercepts for the graph of

- (i)
- f
- (ii)

g.

[2 marks]


rs Practice



### Question 6a

Consider the functions  $f(x) = -x^2 - x + 6$  and  $g(x) = (2x + 1)^2 - 9$ .

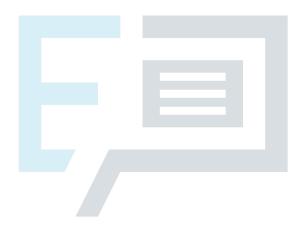
Sketch the graphs of the functions f(x) and g(x) and label the coordinates of the vertices for both functions.



Exam Papers Practic [4marks]

### Question 6b

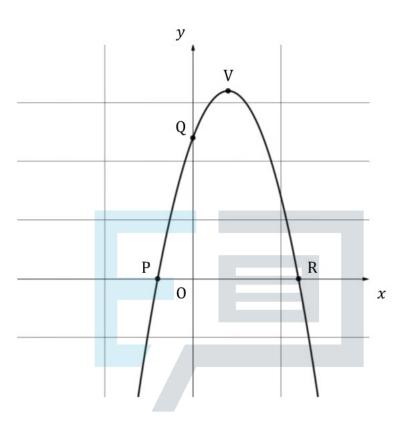
Find the coordinates for the points of intersection of f(x) and g(x).




[2 marks]

### Question 6c

Find the x-intercepts of f(x) and g(x).


[2 marks]





### Question 7a

The diagram below shows part of the graph of the function  $f(x) = -x^2 + bx + c$ , where b and c are both integers. Points P(-2, 0) and R(6, 0) represent the x-intercepts, point Q(0, 12) represents the y-intercept, point V represents the vertex of the graph of f and O represents the origin (0, 0).



Write down the value of c.

Papers Practice [Imark]

### Question 7b

Find the value of b and write down f(x).

[3 marks]



### Question 7c

Write down the coordinates of  $\boldsymbol{V}$ .

[2 marks]

### Question 8a

The function  $g(x) = ax^2 + bx + c$  intercepts the y-axis at -16, has an x-intercept when x = -4 and can be obtained by an appropriate translation of the graph  $y = 2x^2$ .

(i) Find the values of a, b and c.

(ii)

Write down g(x)



[4 marks]

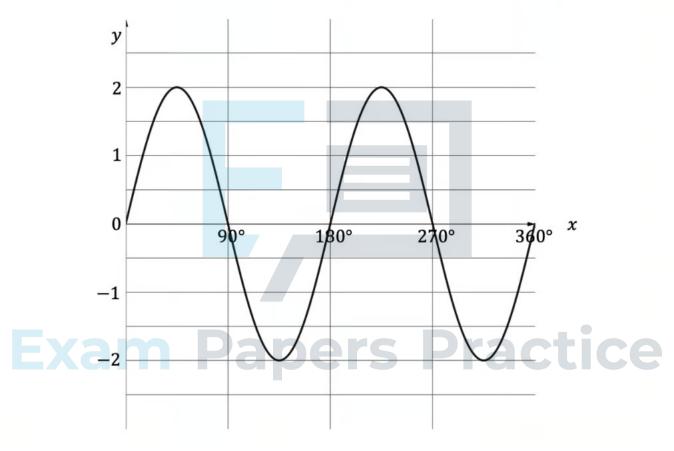
## **Exam Papers Practice**

### **Question 8b**

Find the other *X*-intercept of g(x).

[1 mark]

#### Question 8c


Write down the coordinates of the vertex of g(x).



[2 marks]

### Question 9a

The diagram below shows the graph of the function  $f(x) = 2\sin(2x)$  for  $0^{\circ} \le x \le 360^{\circ}$ .



State the amplitude of f(x).

[1 mark]

### **Question 9b**

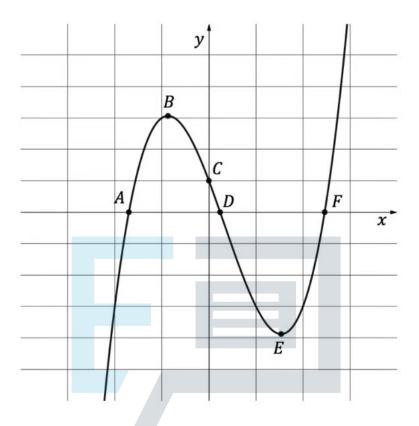
Calculate the period of f(x).

[2 marks]



### Question 9c

Find the possible values of x when f(x) = -1.


[4 marks]





### Question 10a

The diagram below shows part of the graph of the function  $f(x) = x^3 - x^2 - 4x + 1$ .



Points A, C, D and F represent where the graph of f intersects the coordinate axes, write down the coordinates for

| (i)              |               |     |       |
|------------------|---------------|-----|-------|
| $\boldsymbol{A}$ | <b>Papers</b> | Ura | CTICA |
|                  | rapeis        |     | 06100 |

(ii)

 $\boldsymbol{C}$ 

(iii) D

(iv) F.

[4 marks]



### **Question 10b**

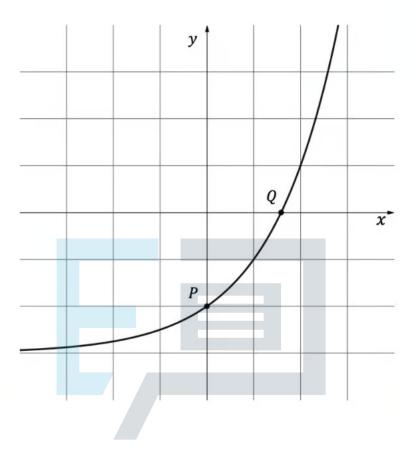
Points B and E represent the local maximum and minimum respectively for f(x), write down the coordinates for

(i)

B

(ii)

E.




[2 marks]



### Question 11a

The diagram below shows part of the graph of the function  $f(x) = 2^x - 3$ .



Find

# xam Papers Practice

x when f(x) = -1.

[2 marks]

### Question 11b

The point P represents the y-intercept of f(x). Write down the coordinates of P.

[1 mark]



### Question 11c

The point Q represents the x-intercept of f(x). Write down the coordinates of Q.


[1 mark]

### Question 11d

Draw the line y = -3 on the graph above.

Write down the number of solutions to the equation f(x) = -3.

[2 marks]

