EXAM PAPERS PRACTICE

Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme
Suitable for all boards
Designed to test your ability and thoroughly prepare you

2.2 Further Functions \& Graphs

2.2.1 Functions

Language of Functions

What is a mapping?

- A mapping transforms one set of values (inputs) into another set of values (outputs)
- Mappings canbe:
- One-to-one
- Eachinput gets mapped to exactly one unique output
- No two inputs are mapped to the same output
- For example: A mapping that cubes the input
- Many-to-one
- Each input gets mapped to exactly one output
- Multiple inputs can be mapped to the same output
- For example: A mapping that squares the input
- One-to-many
- An input can be mapped to more than one output
- No two inputs are mapped to the same output
- For example: A mapping that gives the numbers which when squared equal the input
- Many-to-many
- An input can be mapped to more than one output
- Multiple inputs can be mapped to the same output
- For example: A mapping that gives the factors of the input

What is a function?

- A function is a mapping between two sets of numbers where each input gets mapped to exactly one output
- The output does not need to be unique
- One-to-o ne and many-to-one mappings are functions
- A mapping is a function if its graph passes the vertical line test
- Any vertical line will intersect with the graph at most once

MANY-TO-ONE MAPPINGS
ARE FUNCTIONS

ONE-TO-ONE MAPPINGS ARE FUNCTIONS

What notation is used for functions?

- Functions are denoted using letters (such as f, V, g, etc)
- A function is followed by a variable in a bracket
- This shows the input for the function
- The letter f is used most commonly for functions and will be used for the remainder of this revisionnote
- $\quad f(X)$ represents an expression for the value of the function f when evaluated for the variable \boldsymbol{X}
- Function notation gets rid of the need for words which makes it universal
- $f=5$ when $X=2$ can simply be written as $f(2)=5$

What are the domain and range of a function?

- The do main of a function is the set of values that are used as inputs
- A domain should be stated with a function
- If a domain is not stated then it is assumed the domain is all the real values which would work as inputs for the function
- Domains are expressed interms of the input
- $x \leq 2$
- The range of a function is the set of values that are given as outputs
- The range depends on the domain
- Ranges are expressed in terms of the output
- $f(x) \geq 0$
- To graph a function we use the inputs as the \boldsymbol{x}-coordinates and the outputs as the \boldsymbol{y} coordinates
- $f(2)=5$ corresponds to the coordinates $(2,5)$
- Graphing the function can help you visualise the range
- Commonsets of numbers have special symbols:
- \mathbb{R} represents all the real numbers that can be placed on a number line
- $X \in \mathbb{R}$ means \boldsymbol{X} is a real number

Page 2 of 22
For more help visit our website www.exampaperspractice.co.uk

- \mathbb{Q} represents all the rational numbers $\frac{a}{b}$ where a and b are integers and $b \neq 0$
- \mathbb{Z} represents all the integers (positive, negative and zero)
- \mathbb{Z}^{+}represents positive integers
- \mathbb{N} represents the natural numbers ($0,1,2,3 . .$.)

(9) Exam Tip

- Questions mayreferto "the largest possible domain"
- This would usually be $X \in \mathbb{R}$ unless natural numbers, integers or quotients has already beenstated
- There are usuallysome exceptions
- e.g. $X \geq 0$ forfunctions involving a square root (so the function can be 1-to-1 and have an inverse)
- e.g. $x \neq 2$ for a reciprocal function with denominator $x-2$

Exam Papers Practice

Worked example

For the function $f(x)=x^{3}+1,2 \leq x \leq 10$:
a) write down the value of $f(7)$.

$$
\begin{aligned}
& \text { Substitute } x=7 \\
& f(7)=7^{3}+1 \\
& f(7)=344
\end{aligned}
$$

b) find the range of $f(x)$.

Find the values of $x^{3}+1$ when $2 \leqslant x \leqslant 10$
$2 \leqslant x \leqslant 10$
$8 \leqslant x^{3} \leqslant 1000$
$9 \leqslant x^{3}+1 \leqslant 1001$
$9 \leqslant f(x) \leqslant 1001$

Piecewise Functions

What are piecewise functions?

- Piecewise functions are defined by different functions depending on which interval the input is in
- E.g. $f(x)=\left\{\begin{array}{cl}x+1 & x \leq 5 \\ 2 x-4 & 5<x<10\end{array}\right.$
- The region for the individual functions cannot overlap
- To evaluate a piecewise function for a particular value $X=k$
- Find which interval includes k
- Substitute $\boldsymbol{X}=\boldsymbol{k}$ into the corresponding function

Exam Papers Practice

Worked example

For the piecewise function

$$
f(x)= \begin{cases}2 x-5 & -10 \leq x \leq 10 \\ 3 x+1 & x>10\end{cases}
$$

a) find the values of $f(0), f(10), f(20)$.

Identity the correct function to use

$$
f(0)=-5 \quad f(10)=15 \quad f(20)=61
$$

b) state the domain.

Domain is the set of inputs $-10 \leqslant x \leqslant 10$ and $x>10$

$$
\begin{aligned}
& x=0 \text { is in }-10 \leqslant x \leqslant 10 \Rightarrow f(0)=2(0)-5=-5 \\
& x=10 \text { is in }-10 \leqslant x \leqslant 10 \Rightarrow f(10)=2(10)-5=15 \\
& x=20 \text { is in } x>10 \Rightarrow f(20)=3(20)+1=61
\end{aligned}
$$

2.2.2 Graphing Functions

Graphing Functions

How do Igraph the function $\boldsymbol{y}=\boldsymbol{f}(\boldsymbol{x})$?

- A point (a, b) lies on the graph $y=f(x)$ if $f(a)=b$
- The horizontal axis is used for the domain
- The vertical axis is used forthe range
- You will be able to graph some functions by hand
- For some functions you will need to use your GDC
- You might be asked to graph the sum ordifference of two functions
- Use your GDC to graph $y=f(x)+g(x)$ or $y=f(x)-g(x)$
- Just type the functions into the graphing mode

What is the difference between "draw" and "sketch"?

- If asked to sketch you should:
- Show the general shape
- Label anykeypoints such as the intersections with the axes
- Labelthe axes
- If asked to draw you should:
- Use a pencil and ruler
- Draw to scale
- Plot anypoints accurately
- Join points with a straight line or smooth curve
- Label anykeypoints such as the intersections with the axes
- Label the axes

Howcan my GDC help me sketch/draw a graph?

- You use your GDC to plot the graph
- Check the scales on the graph to make sure you see the full shape
- Use your GDC to find any key points
- Use your GDC to check specific points to help you plot the graph

Key Features of Graphs

What are the keyfeatures of graphs?

- You should be familiar with the following keyfeatures and know how to use your GDC to find them
- Local minimums/maximums
- These are points where the graph has a minimum/maximum for a small region
- They are also called turning points
- This is where the graph changes its direction between upwards and downwards directions
- A graph can have multiple local minimums/maximums
- Alocal minimum/maximum is not necessarily the minimum/maximum of the whole graph
- This would be called the global minimum/maximum
- For quadratic graphs the minimum/maximum is called the vertex
- Intercepts
- y-intercepts are where the graph crosses the y-axis
- At these points $x=0$
- x-intercepts are where the graph crosses the x-axis
- At these points $y=0$
- These points are also called the zeros of the function orroots of the equation
- Symmetry
- Some graphs have lines of symmetry
- A quadratic will have a vertic al line of symmetry
- Asymptotes
- These are lines which the graph will get closer to but not cross
- These can be horizontal orvertical
- Exponential graphs have horizontal asymptotes
- Graphs of variables which vary inverselycan have vertical and horizontal asymptotes

- Exam Tip

- Most GDC makes/mo dels will not plot/show asymptotes just from inputting a function
- Add the asymptotes as additional graphs for your GDC to plot
- Youcan then check the equations of your asymptotes visually
- Youmay have to zoom in or change the viewing wind ow options to confirm an asymptote
- Even if using your GDC to plot graphs and solve problems sketching them as part of your working is good examtechnique
- Label the keyfeatures of the graph and anything else relevant to the question on your sketch

Exam Papers Practice

Worked example

Two functions are defined by

$$
f(x)=x^{2}-4 x-5 \text { and } g(x)=2+\frac{1}{x+1} .
$$

a) Draw the graph $y=f(x)$.

Draw means accurately
Use GDC to find vertex, roots and y-intercepts
Vertex $=(2,-9)$
Roots $=(-1,0)$ and $(5,0)$
y-intercept $=(0,-5)$

b) Sketch the graph $y=g(x)$.

Exam Papers Practice

Sketch means rough but showing key points Use GDC to find x and y-intercepts and asymptotes x-intercept $=\left(-\frac{3}{2}, 0\right)$ y-intercept $=(0,3)$

Asymptotes : $x=-1$ and $y=2$
 Exam Papers Practice
© 2024 Exam Papers Practice

Intersecting Graphs

How do Ifind where two graphs intersect?

- Plot both graphs on your GDC
- Use the intersect function to find the intersections
- Check if there is more than one point of intersection

- LINES INTERSECT AT $(2,1)$
- SOLVING $2 x-y=3$ AND $3 x+y=7$ SIMULTANEOUSLY IS $x=2, y=1$

Howcan Iuse graphs to solve equations?

- One method to solve equations is to use graphs
- To solve $f(x)=a$
- Plot the two graphs $y=f(x)$ and $y=a$ onyour GDC
- Find the points of intersections
- The \boldsymbol{x}-coordinates are the solutions of the equation
- To solve $f(x)=g(x)$
- Plot the two graphs $y=f(x)$ and $y=g(x)$ on your GDC
- Find the points of intersections
- The \boldsymbol{x}-coordinates are the solutions of the equation
- Using graphs makes it easier to see how many solutions an equation will have

(9) Exam Tip

- You can use graphs to solve equations
- Questions will not necessarily ask fora drawing/sketchormake reference to graphs
- Use yo ur GDC to plot the equations and find the intersections between the graphs

Worked example

Two functions are defined by

$$
f(x)=x^{3}-x \text { and } g(x)=\frac{4}{x}
$$

a) Sketch the graph $y=f(x)$.

Use GDC to find max, min, intercepts

b) Write down the number of real solutions to the equation $x^{3}-x=2$.

Copyright Identify the number of intersections between

© 2024 Exam Papers P

$$
y=x^{3}-x \quad \text { and } y=2
$$

1 intersection

1 solution
c) Find the coordinates of the points where $y=f(x)$ and $y=g(x)$ intersect.

Exam Papers Practice

Use GDC to sketch both graphs

$$
(-1.60,-2.50) \text { and }(1.60,2.50)
$$

d)

Write down the solutions to the equation $X^{3}-x=\frac{4}{x}$.
Solutions to $x^{3}-x=\frac{4}{x}$ are the x coordinates of the points of intersection. $x=-1.60$ and $x=1.60$

2.2.3 Propertie s of Graphs

Quadratic Functions \& Graphs

What are the keyfeatures of quadratic graphs?

- A quadratic graph is of the form $y=a x^{2}+b x+c$ where $a \neq 0$.
- The value of a affects the shape of the curve
- If ais positive the shape is \cup
- If ais negative the shape is \bigcap
- The \boldsymbol{y}-intercept is at the point $(0, c)$
- The zeros or roots are the solutions to $a x^{2}+b x+c=0$
- These can be found using yo ur GDC orthe quadratic formula
- These are also called the x-intercepts
- There canbe 0,1or2x-intercepts
- There is an axis of symmetry at $x=-\frac{b}{2 a}$
- This is given in yo ur formula booklet
- If there are two x-intercepts then the axis of symmetrygoes through the midpoint of them
- The vertex lies on the axis of symmetry
- The x-coordinate is $-\frac{b}{2 a}$
- The y-coordinate can be found using the GDC or by calculating ywhen $x=-\frac{b}{2 a}$
- If ais positive then the vertex is the minimum point
- If ais negative then the vertex is the maximumpoint

POSITIVE QUADRATIC

Exam Tip

- Use your GDC to find the roots and the turning point of a quadratic function
- Youdo not need to factorise orcomplete the square
- It is good exam technique to sketch the graph fromyour GDC as part of your working

Worked example

a) Write down the equation of the axis of symmetry for the graph $y=4 x^{2}-4 x-3$.

$$
\begin{aligned}
& a=4 \quad b=-4 \quad c=-3 \\
& x=-\frac{-4}{2(4)} \\
& x=\frac{1}{2}
\end{aligned}
$$

b) Sketch the graph $y=4 x^{2}-4 x-3$.

Use GDC to find vertex, roots and y-intercepts
Vertex $=\left(\frac{1}{2},-4\right)$
Roots $=\left(-\frac{1}{2}, 0\right)$ and $\left(\frac{3}{2}, 0\right)$
y-intercept $=(0,-3)$

Cubic Functions \& Graphs

What are the keyfeatures of cubic graphs?

- A cubic graph is of the form $y=a x^{3}+b x^{2}+c x+d$ where $a \neq 0$.
- The value of a affects the shape of the curve
- If ais positive the graph goes frombottom left to top right
- If ais negative the graph go es from top left to bottom right
- The \boldsymbol{y}-intercept is at the point $(0, d)$
- The zeros or roots are the solutions to $a x^{3}+b x^{2}+c x+d=0$
- These can be found using your GDC
- These are also called the x-intercepts
- There can be 1,2 or $3 x$-intercepts
- There is always at least 1
- There are either $\mathbf{0}$ or $\mathbf{2}$ local minimums/maximums
- If there are 0 then the curve is monotonic (always increasing oralways decreasing)
- If there are 2 then one is a local minimum and one is a local maximum

- Exam Tip

- Use your GDC to find the roots, the local maximum and local minimum of a cubic function
- When drawing/sketching the graph of a cubic function be sure to label all the keyfeatures
- X and y axes intercepts
- the local maximum point
- the localminimumpoint

Exam Papers Practice

Worked example

Sketch the graph $y=2 x^{3}-6 x^{2}+x-3$.

Use $G D C$ to find \min, max, roots and y-intercept $M_{\text {in }}=(1.913,-9.043) \quad M_{a x}=(0.087,-2.957)$
$R_{\text {cot }}=(3,0)$
y-intercept $=(0,-3)$

Copyright
© 2024 Exam Papers Practice

E,旬
 Exam Papers Practice

Exponential Functions \& Graphs

What are the keyfeatures of exponential graphs?

- An exponential graph is of the form
- $y=k a^{x}+c$ or $y=k a^{-x}+c$ where $a>0$
- $y=k \mathrm{e}^{r x}+c$
- Where e is the mathematical constant 2.718...
- The y-intercept is at the point $(0, k+c)$
- There is a horizontal asymptote at $y=c$
- The value of k determines whether the graph is above or below the asymptote
- If \boldsymbol{k} is positive the graph is above the asymptote
- So the range is $y>c$
- If \boldsymbol{k} is negative the graph is below the asymptote
- So the range is $y<c$
- The coefficient of x and the constant k determine whether the graph is increasing or decreasing
- If the coefficient of x and k have the same sign then graph is increasing
- If the coefficient of x and k have different signs then the graph is decreasing
- There is at most lroot
- It can be found using your GDC

- Exam Tip

- You may have to change the viewing wind ow settings on your GDC to make asymptotes clear
- A small scale can make it look as though the curve and an asymptote intercept
- Be careful about how two exponential graphs drawn on the same axes look
- Particularly which one is "on top" eitherside of the y-axis

Exam Papers Practice

Worked example

a) On the same set of axes sketch the graphs $y=2^{x}$ and $y=3^{x}$. Clearly label each graph.

b) Sketch the graph $y=2 \mathrm{e}^{-3 x}+1$

Use $G D C$ to find intercept and asymptote y-intercept $=(0,3)$

Exam Papers Practice

Sinusoidal Functions \& Graphs

What are the keyfeatures of sinusoidal graphs?

- A sinusoidal graph is of the form
- $y=\operatorname{asin}(b(x-c))+d$
- $y=\operatorname{acos}(b(x-c))+d$
- The \boldsymbol{y}-intercept is at the point where $\boldsymbol{x}=\mathbf{0}$
- $(0,-a \sin (b c)+d)$ for $y=a \sin (b(x-c))+d$
- $(0, a \cos (b c)+d)$ for $y=a \cos (b(x-c))+d$
- The period of the graph is the length of the interval of a full cycle
- This is $\frac{360^{\circ}}{b}$ (in degrees) or $\frac{2 \pi}{b}$
- The maximum value is $y=a+d$
- The minimum value is $y=-a+d$
- The principal axis is the horizontal line halfway between the maximum and minimum values
- This is $y=d$
- The amplitude is the vertical distance from the principal axis to the maximum value
- This is a
- The phase shift is the horizontal distance fromits usual position
- This is C

- Exam Tip

- Make sure your angle setting is in the correct mode (degrees or radians) at the start of a question involving sinusoidal functions
- Paycareful attention to the angles between whichyou are required to use ordraw/sketch a sinusoidal graph
- e.g. $0^{\circ} \leq x \leq 360^{\circ}$

(. Worked example

a) Sketch the graph $y=3 \sin \left(2\left(x^{\circ}-15^{\circ}\right)\right)+1$ forth values $0 \leq x \leq 360$.

Use $G D C$ to find max and min

b) State the equation of the principal axis of the curve.

c) State the period and amplitude.
copyright Period is how often it repeats
© 2024 Exam Papers

$$
\frac{360}{2}=180
$$

$$
\text { Period }=180^{\circ}
$$

Amplitude is distance from principal axis to maximum
or minimum

$$
4-1=1--2=3
$$

Amplitude $=3$

