Classification of Particles TOPIC QUESTIONS

Level	AS Level
Subject	Physics
Exam Board	AQA
Paper Type	Multiple Choice

Time Allowed : 30min

1. A muon and an antimuon annihilate to produce the minimum number of photons.

What is the maximum wavelength of the photons?

A $5.9 \times 10^{-15} \mathrm{~m}$
B $1.2 \times 10^{-14} \mathrm{~m}$
C $5.9 \times 10^{-9} \mathrm{~m}$
D $1.2 \times 10^{-8} \mathrm{~m}$
2. Which row describes the nature of the strong nuclear force between two nucleons at separationsof $0.25 \mathrm{fm}, 2.0 \mathrm{fm}$ and 8.0 fm ?

	At a separation of $\mathbf{0 . 2 5}$ $\mathbf{f m}$	At a separation of $\mathbf{2 . 0}$ $\mathbf{f m}$	At a separation of 8.0 $\mathbf{f m}$
A	attractive	repulsive	negligible
B	repulsive	attractive	attractive
C	negligible	repulsive	attractive
D	repulsive	attractive	negligible

3. What are the products when a free neutron decays?

A $\quad \mathrm{p}+\mathrm{e}^{-}+v_{\mathrm{e}}$
B $\quad \mathrm{p}+\mathrm{e}^{+}+\bar{v}_{\mathrm{e}}$
C $\mathrm{p}+\mathrm{e}^{-}+\bar{v}_{\mathrm{e}}$
D $\mathrm{p}+\mathrm{e}^{+}+v_{\mathrm{e}}$
For more help, please visit www.exampaperspractice.co.uk
4. In a Young's double-slit experiment, monochromatic light is incident on two narrow slits and the resulting interference pattern is observed on a screen.

Which change decreases the fringe separation?

A decreasing the separation between the two slits

B increasing the distance between the slits and the screen

C using monochromatic light of higher frequency

D using monochromatic light of longer wavelength
5. Which shows the classification of particles?

For more help, please visit www.exampaperspractice.co.uk

A

B

C

D
6. An electron collides with an isolated atom and raises an atomic electron to a higher energy level.Which statement is correct?

A The colliding electron is captured by the nucleus of the atom.

B A photon is emitted when the electron rises to the higher energy level.

C An electron is emitted when the excited electron returns
to the ground state.
D The colliding electron transfers energy to the atomic electron.
7. Which graph shows the variation of momentum p with wavelength λ of a photon?

A

B

C

D
8. Photons of energy $1.0 \times 10^{-18} \mathrm{~J}$ are incident on a metal surface and cause the emission ofelectrons from the metal surface.

Which statement about the emitted electrons is correct?

A They each have a kinetic energy of $1.0 \times 10^{-18} \mathrm{~J}$.

B They each have a kinetic energy that is a multiple of $1.0 \times 10^{-18} \mathrm{~J}$.

C Their mean kinetic energy is $1.0 \times 10^{-18} \mathrm{~J}$.

D The kinetic energy of each must be less than $1.0 \times 10^{-18} \mathrm{~J}$.
9. Evidence of the wave-like properties of electrons is

A the emission of electrons when short-wavelength light falls on a metal surface.

B the movement of electrons in an electric current.

C the diffraction of electrons by a metal crystal.
D the annihilation of an electron with a positron.
10. The diagram shows the energy levels in an atom drawn to scale. A transition from E_{4} to E_{2} causes the emission of a photon of green light.

Which transition could cause the emission of a photon of red light?

A E_{2} to E_{1}

B $\quad E_{3}$ to E_{1}

- C E_{3} to E_{2}
 D E_{4} to E_{1}

11. An electron collides with a neutral atom and ionizes it. Which of the following describes theparticles present after the collision?

A An electron and an excited atom.
B An excited atom containing an excess electron.
C Two electrons and a positive ion.
D Two electrons and a neutral atom in the ground state.
12. A radioactive nucleus emits a β. particle then an α particle and finally another β. particle. The final nuclide is

A an isotope of the original element

B the same element with a different proton number

C a new element of higher proton number

D a new element of lower nucleon number

EXAM PAPERS

13. Interference maxima produced by a double source are observed at a distance of 1.0 m from thesources. In which one of the following cases are the maxima closest together?

A red light of wavelength 700 nm from sources 4.0 mm apart
B sound waves of wavelength 20 mm from sources 50 mm apart
C blue light of wavelength 450 nm from sources 2.0 mm apart
D surface water waves of wavelength 10 mm from sources 200 mm apart
14. The diagram shows a microwave transmitter T which directs microwaves of wavelength eat twoslits S_{1} and S_{2} formed by metal plates. The microwaves that pass through the two slits are detected by a receiver.

> receive
> rat O

When the receiver is moved to P from O , which is equidistant from S_{1} and S_{2}, the signal received decreases from a maximum to a minimum. Which one of the following statements is a correct deduction from this observation?

A The path difference $\mathrm{S}_{1} \mathrm{O}-\mathrm{S}_{2} \mathrm{O}=0.5 \lambda$
B The path difference $\mathrm{S}_{1} \mathrm{O}-\mathrm{S}_{2} \mathrm{O}=\lambda$
c The path difference $\mathrm{S}_{1} \mathrm{P}-\mathrm{S}_{2} \mathrm{P}=0.5 \lambda$
D The path difference $\mathrm{S}_{1} \mathrm{P}-\mathrm{S}_{2} \mathrm{P}$ $=\lambda$
15.

Point sources of sound of the same frequency are placed at S_{1} and S_{2}. When a sound detector is slowly moved along the line $P Q$, consecutive maxima of sound intensity are detected at W and Y and consecutive minima at X and Z . Which one of the following is a correct expression for the wavelength of the sound?

A $\quad \mathrm{S}, \mathrm{X}-\mathrm{S}, \mathrm{W}$
B $\quad S_{1} Y-S_{1} X$
c $\quad S_{1} X-S_{2} X$

EXAM PAPERS PRACTICE

D $S_{1} Y-S_{2} Y$
16. Light of wavelength λ is incident normally on a diffraction grating for which adjacent lines are adistance 3λ apart. What is the angle between the second order maximum and the straight-through position?

A 9.6°
B 20°
C 42°
D There is no second order maximum.
17. Light of wavelength λ is incident normally on a diffraction grating of slit separation 4λ. What is theangle between the second order maximum and third order maximum?

A 14.5°
B 18.6°
C 48.6°
D
71.4
18. A narrow beam of monochromatic light falls on a diffraction grating at normal incidence. The second order diffracted beam makes an angle of 45° with the grating. What is the highest ordervisible with this grating at this wavelength?

A 2
B 3
C 4
D 5
19. Monochromatic light of wavelength 590 nm is incident normally on a plane diffraction grating having 4×10^{5} lines m^{-1}. An interference pattern is produced. What is the highest order visible in this interference pattern?

A 2
B 3
C 4
D 5
20. Using a diffraction grating with monochromatic light of wavelength 500 nm incident normally, a student found the 2nd order diffracted maxima in a direction at 30° to the central bright fringe. What is the number of lines per metre on the grating?

A 2×10^{4}
B 2×10^{5}
C 4×10^{5}
D 5×10^{5}

