

#### CONTENTS

2.1.1 States of Matter

# 2.1.1 STATES OF MATTER

### The Three States of Matter

- The three states of matter are **solids**, **liquids** and **gases**
- A substance can usually exist in all three states, dependent on temperature (and pressure)
- State changes occur at the **melting point** (solid to liquid, liquid to solid) and at the **freezing point** (liquid to gas and gas to liquid)
  - $^{\circ}~$  Melting and freezing occur at the melting point
  - $^{\circ}~$  Boiling and condensing take place at the boiling point
- Individual atoms themselves do not share the same properties as bulk matter
- The three states of matter can be represented by a simple model
  - $^{\circ}~$  In this model, the particles are represented by small solid spheres

#### Summary of the Properties of Solids, Liquids and Gases

| State                       | Solid                           | Liquid                    | Gas                               |
|-----------------------------|---------------------------------|---------------------------|-----------------------------------|
| Density                     | High                            | Medium                    | Low                               |
| Arrangement of<br>particles | Regular pattern                 | Randomly arranged         | Randomly arranged                 |
| Movement of<br>particles    | Vibrate around a fixed position | Move around each<br>other | Move quickly in all<br>directions |
| Energy of particles         | Low energy                      | Greater energy            | Highest energy                    |
| 2D diagram                  |                                 |                           |                                   |



#### Interconversions

- The amount of energy needed to change state from solid to liquid and from liquid to gas depends on the strength of the forces between the particles
  - The stronger the forces of attraction, the more energy that is needed to overcome them for a state change to occur
  - Therefore, the stronger the forces between the particles the higher the melting point and boiling point of the substance
- When matter changes from one state to another due to changes in temperature or pressure, the change is called an **interconversion** of **state**
- It is a **physical change** involving changes in the **forces** between the particles of the substances, the particles themselves remain the **same**, as do the chemical properties of the substance
- Physical changes are relatively easy to reverse as no new substance is formed during interconversions of state
- The interconversions have specific terms to describe them:

#### A Summary of State Changes

| Interconversion | Change                                                     |
|-----------------|------------------------------------------------------------|
| Melting         | Solid to a liduid                                          |
| Boiling         | Liquid to a gas (from below surface as well as at surface) |
| Freezing        | Liquid to a solid                                          |
| Evaporation     | Liquid to a gas (at surface only)                          |
| Condensation    | Gas to a liquid                                            |
| Sublimation     | Solid to a gas                                             |



### Melting

- Melting is when a solid changes into a liquid
- The process requires heat energy which transforms into **kinetic** energy, allowing the particles to move
- It occurs at a specific temperature known as the **melting point** which is **unique** to each pure solid

### Boiling

- Boiling is when a liquid changes into a gas
- This requires heat which causes bubbles of gas to form **below** the surface of a liquid, allowing for liquid particles to escape from the surface and from within the liquid
- It occurs at a specific temperature known as the **boiling point** which is **unique** to each pure liquid

### Freezing

- Freezing is when a liquid changes into a solid
- This is the reverse of melting and occurs at exactly the **same temperature** as melting, hence the melting point and freezing point of a pure substance are the same
  - $^{\circ}~$  Water for example freezes and melts at 0  $^{\circ}\mathrm{C}~$
- It requires a significant decrease in temperature (or loss of thermal energy) and occurs at a specific temperature which is **unique** for each pure substance

### Evaporation

- When a liquid changes into a gas
- Evaporation occurs only at the **surface** of liquids where high energy particles can escape from the liquids surface at **low** temperatures, below the boiling point of the liquid
- The larger the surface area and the warmer the liquid/surface, the more quickly a liquid can evaporate
- Evaporation occurs over a **range** of temperatures, but heating will speed up the process as particles need energy to escape from the surface

# EXAM PAPERS PRACTICE

# 2.1 States of Matter

### Condensation

- When a gas changes into a liquid, usually on cooling
- When a gas is cooled its particles lose energy and when they bump into each other, they lack energy to bounce away again, instead grouping together to form a liquid

## Sublimation

- When a solid changes directly into a gas
- This happens to only a few solids, such as iodine or solid carbon dioxide
- The reverse reaction also happens and is called desublimation or deposition



#### Interconversion between the three states of matter

Exam Tip

Solids, liquids and gases have different physical properties. The difference in these properties comes from differences in how the particles are arranged in each state.



### **Predicting Physical State**

- The physical state of a substance under certain conditions can be predicted from a given set of data.
- Normally you are given **melting** and **boiling** point data for a substance and asked to predict its physical state in specified conditions.
- At temperatures **below** the **melting** point:
  - $^\circ~$  The substance is will be in the  ${\rm solid}$  state
- At temperatures **above** the **melting** point but **below** the **boiling** point:
  - $^\circ~$  The substance will be in the  ${\it liquid}$  state
- At temperatures **above** the **boiling** point:
  - $^\circ~$  The substance will be in the **gaseous** state.

# EXAM PAPERS PRACTICE

# 2.1 States of Matter

## Worked Example

#### **Predicting the state**

The table below indicates melting and boiling point data for four different substances named A, B, C and D. Predict the states of the following substances:

•

2

- ° Substance A at -150 °C
- ° Substance B at 50 °C
- ° Substance C at 1400 °C
- ° Substance D at 400 °C

#### **Melting & Boiling Points Table**

| Substance | Melting point /°C | Boiling point∕°C |
|-----------|-------------------|------------------|
| A         | -215.6            | - 173            |
| В         | 1736              | 2800             |
| с         | 1105              | 1450             |
| D         | 650               | 1560             |

#### Solution

- $^\circ~$  A boils at temperatures above -173 °C so at -150 °C A is a gas
- $^\circ~$  B melts at 1736 °C so at 50 °C it is a **solid**
- $^\circ~$  C melts at 1105 °C and boils at 1450 °C so at 1400 °C it is a liquid
- $^\circ~$  D melts at 650 °C so at 400 °C it is a **solid**