

Page 1 of 111

2.1 Data structures, abstract data types part 1 Mark Scheme

Page 2 of 111

Mark schemes

Q1.
Marks are for AO1 (understanding)

Static data structures have storage size determined at compile-time / before
program is run / when program code is translated; dynamic data structures can
grow/shrink during execution / at run-time;
//
Static data structures can waste storage space/memory if the number of data items
stored is small relative to the size of the structure; whereas dynamic data structures
only take up the amount of storage space required for the actual data;
//
Static data structures have fixed (maximum) size; whereas size of dynamic data
structures can change;
//
Dynamic data structures (typically) require memory to store pointer(s) to the next

item(s); which static data structures (typically) do not need; NE. Dynamic data
structures use pointers
//
Static data structures (typically) store data in consecutive memory locations; which
dynamic data structures (typically) do not;

[2]

Q2.
(a) Marks are for AO2 (analyse)

Feature Is present in Figure 11? (Yes/No)

Inheritance No

Protected method No

Private attribute Yes

A. alternative indicators instead of Yes/No eg Y/N.

Mark as follows:
One mark per correct row

3

(b) Mark is for AO2 (analyse)

Rabbit // Fox;

R. if spelt incorrectly

R. if any additional code
I. case

1

(c) Marks are for AO1 (understanding)

A protected attribute can be accessed (within its class and) by derived class
instances / subclasses;

Page 3 of 111

A private attribute can only be accessed within its class;
A. private attribute can only be accessed within its file (Java only)

2

(d) 1 mark for AO2 (analyse)

MAX 1 from:

RabbitCount (is a private attribute and) is not accessible outside of the

Warren class;

GetRabbitCount (is a public method and) is accessible outside of the Warren

class;

1 mark for AO1 (understanding)

Means the way RabbitCount is represented can be modified without having to

change any other objects that interact with Warren NE. without having to

change other code // makes it easier to reuse / inherit from the Warren class

(as there is a well-defined interface) ;
A. this allows data/properties to be modified in a controlled way

2

(e) Marks are for AO2 (analyse)

When a rabbit dies it is replaced by null/none; A. when rabbits die they are not
removed from the list

CompressRabbitList makes sure that the space used for dead rabbits in the

list is made available for new rabbits // CompressRabbitList makes sure that

the fixed size array does not fill up with dead rabbits;

CompressRabbitList moves live rabbits to the start of the list

A. CompressRabbitList moves null objects / dead rabbits to the end of the

list // other sections of the code assume that the live rabbits are in continuous
locations in the array (so would not work correctly without a call to
CompressRabbitList);

Max 2

(f) Marks are for AO2 (apply)

HDRabbit = Class(Rabbit)

 Private:

 InfectionRate: Real

 Generation: Integer

 Public:

 Procedure Inspect() (Override)

 Function IsInfertile()

 Function GetGeneration()

 Function GetInfectionRate()

End Class

Information for examiner:
Accept answers that use different notations, so long as meaning is clear.

Mark as follows:

1 mark: 1. for correct header including name of class and parent class

Page 4 of 111

1 mark: 2. for redefining the Inspect method A. Override not stated

1 mark: 3. for defining the two additional attributes, with appropriate data
types and identified as private R. if other attributes included
1 mark: 4. for defining methods needed to read the two additional attributes,
and an IsFertile method, all identified as being public R. if other methods

included

I. missing brackets
I. additional Get/Set methods
I. constructor method
A. any suitable alternatives used instead of Function or Procedure keywords

A. any suitable alternatives for data types eg float or double instead of real
R. do not award mark for declaring new methods if any of the functions have
the same name as the variables

4

[14]

Q3.
(a) (i) Marks are for AO3 (programming)

1 mark: 1. tests for lower bound and displays error message if below
1 mark: 2. tests for upper bound and displays error message if above
1 mark: 3. Upper bound test uses LandscapeSize instead of data value

of 14/15 A. in use of incorrect condition
1 mark: 4. 1-3 happen repeatedly until valid input (for the upper and
lower bounds used in the code provided) and forces re-entry of data
each time

A. use of pre or post-conditioned loop

MAX 3 if error message is not Coordinate is outside of landscape,

please try again A. minor typos in error message I. case I. spacing I.

minor punctuation differences

MAX 2 if new code has been added to Simulation constructor instead

of InputCoordinate method
4

VB.NET
Do

 Console.Write(" Input " & CoordinateName & " coordinate: ")

 Coordinate = CInt(Console.ReadLine())

 If Coordinate < 0 Or Coordinate >= LandscapeSize Then

 Console.WriteLine("Coordinate is outside of landscape,

please try again.")

 End If

Loop While Coordinate < 0 Or Coordinate >= LandscapeSize

Alternative answer

Do

 Console.Write(" Input " & CoordinateName & " coordinate: ")

 Coordinate = CInt(Console.ReadLine())

 If Coordinate < 0 Or Coordinate >= LandscapeSize Then

 Console.WriteLine("Coordinate is outside of landscape,

please try again.")

 End If

Loop Until Coordinate >= 0 And Coordinate < LandscapeSize

Page 5 of 111

PYTHON 2
def __InputCoordinate(self, CoordinateName):

 Coordinate = int(raw_input(" Input " + CoordinateName + "

coordinate:"))

 while Coordinate < 0 or Coordinate >= self.__LandscapeSize:

 Coordinate = int(raw_input("Coordinate is outside of

landscape, please try again."))

 return Coordinate

PYTHON 3
def __InputCoordinate(self, CoordinateName):

 Coordinate = int(input(" Input " + CoordinateName + "

coordinate:"))

 while Coordinate < 0 or Coordinate >= self.__LandscapeSize:

 Coordinate = int(input("Coordinate is outside of

landscape, please try again."))

 return Coordinate

C#
do

{

 Console.Write(" Input " + Coordinatename + " coordinate: ");

 Coordinate = Convert.ToInt32(Console.ReadLine());

 if ((Coordinate < 0) || (Coordinate >= LandscapeSize))

 {

 Console.WriteLine("Coordinate is outside of landscape,

please try again.");

 }

} while ((Coordinate < 0) || (Coordinate >= LandscapeSize));

PASCAL
repeat

 write(' Input ' , CoordinateName, ' coordinate: ');

 readln(Coordinate);

 if (Coordinate < 0) or (Coordinate >= LandscapeSize) then

 writeln('Coordinate is outside of landscape, please try

again.');

until (Coordinate >= 0) and (Coordinate < LandscapeSize);

JAVA
private int InputCoordinate(char CoordinateName)

{

 int Coordinate;

 do

 {

 Coordinate = Console.readInteger(" Input " +

CoordinateName + " coordinate: ");

 if (Coordinate >= LandscapeSize || Coordinate < 0)

 {

 Console.println("Coordinate is outside of landscape,

please try again.");

 }

 }while (Coordinate >= LandscapeSize || Coordinate < 0);

 return Coordinate;

}

(ii) Mark is for AO3 (evaluate)

****SCREEN CAPTURE(S)****
Must match code from part (a)(i), including error message. Code for part
(a)(i) must be sensible.

Page 6 of 111

1 mark: Screen capture(s) showing the required sequence of inputs
(-1, 15, 0), the correct error message being displayed for -1 and 15,

and that 0 has been accepted as the program has displayed the prompt

for the y coordinate to be input.

A. alternative error messages if match code for part (a)(i)
1

(b) (i) Marks are for AO3 (programming)

1 mark: New subroutine created, with correct name, that overrides the
subroutine in the Animal class

I. private, protected, public modifiers

1 mark: 2. CalculateNewAge subroutine in Animal class is always

called
1 mark: 3. Check made on gender of rabbit, and calculations done
differently for each gender

I. incorrect calculations

1 mark: 4. Probability of death by other causes calculated correctly for
male rabbits
1 mark: 5. Probability of death by other causes calculated correctly for
female rabbits

5

VB.NET
Public Overrides Sub CalculateNewAge()

 MyBase.CalculateNewAge()

 If Gender = Genders.Male Then

 ProbabilityOfDeathOtherCauses =

ProbabilityOfDeathOtherCauses * 1.5

 Else

 If Age >= 2 Then

 ProbabilityOfDeathOtherCauses =

ProbabilityOfDeathOtherCauses + 0.05

 End If

 End If

End Sub

A. If Age > 1 Then instead of If Age >= 2 Then

PYTHON 2
def CalculateNewAge(self):

 super(Rabbit, self).CalculateNewAge()

 if self.__Gender == Genders.Male:

 self._ProbabilityOfDeathOtherCauses =

self._ProbabilityOfDeathOtherCauses * 1.5

 else:

 if self._Age >= 2:

 self._ProbabilityOfDeathOtherCauses =

self._ProbabilityOfDeathOtherCauses + 0.05

PYTHON 3

Page 7 of 111

def CalculateNewAge(self):

 super(Rabbit, self).CalculateNewAge()

 if self.__Gender == Genders.Male:

 self._ProbabilityOfDeathOtherCauses =

self._ProbabilityOfDeathOtherCauses * 1.5

 else:

 if self._Age >= 2:

 self._ProbabilityOfDeathOtherCauses =

self._ProbabilityOfDeathOtherCauses + 0.05

C#
public override void CalculateNewAge()

{

 base.CalculateNewAge();

 if (Gender == Genders.Male)

 {

 ProbabilityOfDeathOtherCauses =

ProbabilityOfDeathOtherCauses * 1.5;

 }

 else

 {

 if (Age >= 2)

 {

 ProbabilityOfDeathOtherCauses =

ProbabilityOfDeathOtherCauses + 0.5;

 }

 }

}

PASCAL
Procedure Rabbit.CalculateNewAge();

 begin

 inherited;

 if Gender = Male then

 ProbabilityOfDeathOtherCauses :=

ProbabilityOfDeathOtherCauses * 1.5

 else

 if Age >= 2 then

 ProbabilityOfDeathOtherCauses :=

ProbabilityOfDeathOtherCauses + 0.05;

 end;

JAVA
@Override

public void CalculateNewAge()

{

 super.CalculateNewAge();

 if (Gender == Genders.Male)

 {

 ProbabilityOfDeathOtherCauses *= 1.5;

 }

 else if(Age >= 2)

 {

 ProbabilityOfDeathOtherCauses += 0.05;

 }

}

(ii) Mark is for AO3 (evaluate)

****SCREEN CAPTURE(S)****
Must match code from part (b)(i). Code for part (b)(i) must be sensible.

1 mark: Any screen capture(s) showing the correct probability of death

Page 8 of 111

by other causes for a male rabbit (0.11 to 2dp) and a female rabbit (0.1);

Example:

1

(c) (i) Marks are for AO3 (programming)

1 mark: Structure set-up to store the representation of terrain for a
location
1 mark: Type of terrain is passed to constructor as parameter
1 mark: Type of terrain stored into attribute by constructor A. default
value, that makes type of terrain for location clear, instead of value from
a parameter

3

VB.NET
Class Location

 Public Fox As Fox

 Public Warren As Warren

 Public Terrain As Char

 Public Sub New(ByVal TerrainType As Char)

 Fox = Nothing

 Warren = Nothing

 Terrain = TerrainType

 End Sub

End Class

PYTHON 2
class Location:

 def __init__(self, TerrainType):

 self.Fox = None

 self.Warren = None

 self.Terrain = TerrainType

PYTHON 3
class Location:

 def __init__(self, TerrainType):

 self.Fox = None

 self.Warren = None

 self.Terrain = TerrainType

C#
class Location

{

 public Fox Fox;

 public Warren Warren;

 public char Terrain;

 public Location(char Terraintype)

 {

 Fox = null;

 Warren = null;

 Terrain = Terraintype;

 }

}

PASCAL

Page 9 of 111

type

 Location = class

 Fox : Fox;

 Warren : Warren;

 Terrain : char;

 constructor New(TerrainType : char);

 end;

constructor Location.New(TerrainType : char);

 begin

 Fox := nil;

 Warren := nil;

 Terrain := TerrainType;

 end;

JAVA
class Location

{

 public Fox Fox;

 public Warren Warren;

 public char Terrain;

 public Location(char Terrain)

 {

 Fox = null;

 Warren = null;

 this.Terrain = Terrain;

 }

}

(ii) Marks are for AO3 (programming)

1 mark: 1. An indicator for type of terrain will be stored for every location
I. wrong type of terrain in a location
R. if indicators other than R or L used
I. case of indicators

1 mark: 2. Vertical river created in column 5
1 mark: 3. Horizontal river created in row 2
MAX 1 FOR 2 & 3 if only creates a river when foxes & warrens are in

default locations
MAX 2 if creates any rivers in incorrect locations

3

VB.NET
For x = 0 To LandscapeSize - 1

 For y = 0 To LandscapeSize - 1

 If x = 5 Or y = 2 Then

 Landscape(x, y) = New Location("R")

 Else

 Landscape(x, y) = New Location("L")

 End If

 Next

Next

PYTHON 2
def __CreateLandscapeAndAnimals(self, InitialWarrenCount,

InitialFoxCount, FixedInitialLocations):

 for x in range (0, self.__LandscapeSize):

 for y in range (0, self.__LandscapeSize):

 if x == 5 or y == 2:

 self.__Landscape[x][y] = Location("R")

Page 10 of 111

 else:

 self.__Landscape[x][y] = Location("L")

 if FixedInitialLocations:

...

PYTHON 3
def __CreateLandscapeAndAnimals(self, InitialWarrenCount,

InitialFoxCount, FixedInitialLocations):

 for x in range (0, self.__LandscapeSize):

 for y in range (0, self.__LandscapeSize):

 if x == 5 or y == 2:

 self.__Landscape[x][y] = Location("R")

 else:

 self.__Landscape[x][y] = Location("L")

 if FixedInitialLocations:

...

C#
for (int x = 0; x < LandscapeSize; x++)

{

 for (int y = 0; y < LandscapeSize; y++)

 {

 if ((x == 5) || (y == 2))

 {

 Landscape[x, y] = new Location('R');

 }

 else

 {

 Landscape[x, y] = new Location('L');

 }

 }

}

PASCAL
for x := 0 to LandscapeSize - 1 do

 for y := 0 to LandscapeSize - 1 do

 if (x = 5) or (y = 2) then

 Landscape[x][y] := Location.New('R')

 else

 Landscape[x][y] := Location.New('L');

JAVA
for(int x = 0 ; x < LandscapeSize; x++)

{

 for(int y = 0; y < LandscapeSize; y++)

 {

 if(x==5||y==2)

 {

 Landscape[x][y] = new Location('R');

 }

 else

 {

 Landscape[x][y] = new Location('L');

 }

 }

}

(iii) Marks are for AO3 (programming)

1 mark: R/L, or other indicator as long as it is clear what the type of

terrain is, displayed in each location (could be different letters, use of
different colours) A. type of terrain not displayed if location contains a

Page 11 of 111

fox

1 mark: Row containing column indices matches new display of
landscape I. number of dashes not adjusted to match new width R. if
terrain indicators not displayed A. no adjustment made if indicators for
terrain used mean no adjustment to width of display for terrain was
needed

2

VB.NET
Private Sub DrawLandscape()

 Console.WriteLine()

 Console.WriteLine("TIME PERIOD: " & TimePeriod)

 Console.WriteLine()

 Console.Write(" ")

 For x = 0 To LandscapeSize - 1

 Console.Write(" ")

 If x < 10 Then

 Console.Write(" ")

 End If

 Console.Write(x & " |")

 Next

 Console.WriteLine()

 For x = 0 To LandscapeSize * 5 + 3 'CHANGE MADE HERE

 Console.Write("-")

 Next

 Console.WriteLine()

 For y = 0 To LandscapeSize - 1

 If y < 10 Then

 Console.Write(" ")

 End If

 Console.Write(" " & y & "|")

 For x = 0 To LandscapeSize - 1

 If Not Me.Landscape(x, y).Warren Is Nothing Then

 If Me.Landscape(x, y).Warren.GetRabbitCount() < 10

Then

 Console.Write(" ")

 End If

 Console.Write(Landscape(x,

y).Warren.GetRabbitCount())

 Else

 Console.Write(" ")

 End If

 If Not Me.Landscape(x, y).Fox Is Nothing Then

 Console.Write("F")

 Else

 Console.Write(" ")

 End If

 Console.Write(Landscape(x, y).Terrain)

 Console.Write("|")

 Next

 Console.WriteLine()

 Next

End Sub

PYTHON 2
def __DrawLandscape(self):

 print

 print "TIME PERIOD:", str(self.__TimePeriod)

 print

 sys.stdout.write(" ")

 for x in range (0, self.__LandscapeSize):

 sys.stdout.write(" ")

Page 12 of 111

 if x < 10:

 sys.stdout.write(" ")

 sys.stdout.write(str(x) + " |")

 print

 for x in range (0, self.__LandscapeSize * 5 + 3): #CHANGED

4 TO 5

 sys.stdout.write("-")

 print

 for y in range (0, self.__LandscapeSize):

 if y < 10:

 sys.stdout.write(" ")

 sys.stdout.write(str(y) + "|")

 for x in range (0, self.__LandscapeSize):

 if not self.__Landscape[x][y].Warren is None:

 if self.__Landscape[x][y].Warren.GetRabbitCount() <

10:

 sys.stdout.write(" ")

sys.stdout.write(self.__Landscape[x][y].Warren.GetRabbitCou

nt())

 else:

 sys.stdout.write(" ")

 if not self.__Landscape[x][y].Fox is None:

 sys.stdout.write("F")

 else:

 sys.stdout.write(" ")

 sys.stdout.write(self.__Landscape[x][y].Terrain)

 sys.stdout.write("|")

 print

PYTHON 3
def __DrawLandscape(self):

 print()

 print("TIME PERIOD:", self.__TimePeriod)

 print()

 print(" ", end = "")

 for x in range (0, self.__LandscapeSize):

 print(" ", end = "")

 if x < 10:

 print(" ", end = "")

 print(x, "|", end = "")

 print()

 for x in range (0, self.__LandscapeSize * 5 + 3): #CHANGE

 print("-", end = "")

 print()

 for y in range (0, self.__LandscapeSize):

 if y < 10:

 print(" ", end = "")

 print("", y, "|", sep = "", end = "")

 for x in range (0, self.__LandscapeSize):

 if not self.__Landscape[x][y].Warren is None:

 if self.__Landscape[x][y].Warren.GetRabbitCount() <

10:

 print(" ", end = "")

 print(self.__Landscape[x][y].Warren.GetRabbitCount(

), end = "")

 else:

 print(" ", end = "")

 if not self.__Landscape[x][y].Fox is None:

 print("F", end = "")

 else:

 print(" ", end = "")

 print(self.__Landscape[x][y].Terrain, end = "")

Page 13 of 111

 print("|", end = "")

 print()

C#
private void DrawLandscape()

{

 Console.WriteLine();

 Console.WriteLine("TIME PERIOD: "+TimePeriod);

 Console.WriteLine();

 Console.Write(" ");

 for (int x = 0; x < LandscapeSize; x++)

 {

 Console.Write(" ");

 if (x < 10) { Console.Write(" "); }

 Console.Write(x + " |");

 }

 Console.WriteLine();

 for (int x = 0; x <= LandscapeSize * 5 + 3; x++)

 {

 Console.Write("-");

 }

 Console.WriteLine();

 for (int y = 0; y < LandscapeSize; y++)

 {

 if (y < 10) { Console.Write(" "); }

 Console.Write(" " + y + "|");

 for (int x = 0; x < LandscapeSize; x++)

 {

 if (Landscape[x, y].Warren != null)

 {

 if (Landscape[x, y].Warren.GetRabbitCount() < 10)

 {

 Console.Write(" ");

 }

 Console.Write(Landscape[x,

y].Warren.GetRabbitCount());

 }

 else { Console.Write(" "); }

 if (Landscape[x, y].Fox != null)

 {

 Console.Write("F");

 }

 else

 {

 Console.Write(" ");

 }

 Console.Write(Landscape[x, y].Terrain);

 Console.Write("|");

 }

 Console.WriteLine();

 }

}

PASCAL
procedure Simulation.DrawLandscape();

 var

 x : integer;

 y : integer;

 begin

 writeln;

 writeln('TIME PERIOD: ', TimePeriod);

 writeln;

 write(' ');

Page 14 of 111

 for x := 0 to LandscapeSize - 1 do

 begin

 write(' ');

 if x < 10 then

 write(' ');

 write(x, ' |');

 end;

 writeln;

 for x:=0 to LandscapeSize * 5 + 3 do //CHANGE MADE HERE

 write('-');

 writeln;

 for y := 0 to LandscapeSize - 1 do

 begin

 if y < 10 then

 write(' ');

 write(' ', y, '|');

 for x:= 0 to LandscapeSize - 1 do

 begin

 if not(self.Landscape[x][y].Warren = nil) then

 begin

 if

self.Landscape[x][y].Warren.GetRabbitCount() < 10 then

 write(' ');

 write(Landscape[x][y].Warren.GetRabbitCount

());

 end

 else

 write(' ');

 if not(self.Landscape[x][y].fox = nil) then

 write('F')

 else

 write(' ');

 write(Landscape[x][y].Terrain);

 write('|');

 end;

 writeln;

 end;

 end;

JAVA
private void DrawLandscape()

{

 Console.println();

 Console.println("TIME PERIOD: " + TimePeriod);

 Console.println();

 Console.print(" ");

 for(int x = 0; x < LandscapeSize; x++)

 {

 Console.print(" ");

 if (x < 10)

 {

 Console.print(" ");

 }

 Console.print(x + " |");

 }

 Console.println();

 for(int x = 0; x < LandscapeSize * 5 + 4; x++) //Change made

here

 {

 Console.print("-");

 }

 Console.println();

 for(int y = 0; y < LandscapeSize; y++)

 {

Page 15 of 111

 if(y < 10)

 {

 Console.print(" ");

 }

 Console.print(" " + y + "|");

 for(int x = 0; x < LandscapeSize; x++)

 {

 if (Landscape[x][y].Warren != null)

 {

 if (Landscape[x][y].Warren.GetRabbitCount() < 10)

 {

 Console.print(" ");

 }

Console.print(Landscape[x][y].Warren.GetRabbitCount());

 }

 else

 {

 Console.print(" ");

 }

 if (Landscape[x][y].Fox != null)

 {

 Console.print("F");

 }

 else

 {

 Console.print(" ");

 }

 Console.print(Landscape[x][y].Terrain);

 Console.print("|");

 }

 Console.println();

 }

}

(iv) Marks are for AO3 (programming)

1 mark: Warren/fox will not be placed in a river

1 mark: Warren will not be placed where there is a warren // fox will not
be placed where there is a fox
R. if no sensible attempt at preventing warren/fox from being placed in a
river

1 mark: Fully correct logic in second subroutine
3

VB.NET
Private Sub CreateNewWarren()

 Dim x As Integer

 Dim y As Integer

 Do

 x = Rnd.Next(0, LandscapeSize)

 y = Rnd.Next(0, LandscapeSize)

 Loop While Not Landscape(x, y).Warren Is Nothing Or

Landscape(x, y).Terrain = "R"

 If ShowDetail Then

 Console.WriteLine("New Warren at (" & x & "," & y & ")")

 End If

 Landscape(x, y).Warren = New Warren(Variability)

 WarrenCount += 1

End Sub

Page 16 of 111

Private Sub CreateNewFox()

 Dim x As Integer

 Dim y As Integer

 Do

 x = Rnd.Next(0, LandscapeSize)

 y = Rnd.Next(0, LandscapeSize)

 Loop While Not Landscape(x, y).Fox Is Nothing Or Landscape(x,

y).Terrain = "R"

 If ShowDetail Then

 Console.WriteLine(" New Fox at (" & x & "," & y & ")")

 End If

 Landscape(x, y).Fox = New Fox(Variability)

 FoxCount += 1

End Sub

PYTHON 2
def __CreateNewWarren(self):

 x = random.randint(0, self.__LandscapeSize - 1)

 y = random.randint(0, self.__LandscapeSize - 1)

 while not self.__Landscape[x][y].Warren is None or

self.__Landscape[x][y].Terrain == "R":

 x = random.randint(0, self.__LandscapeSize - 1)

 y = random.randint(0, self.__LandscapeSize - 1)

 if self.__ShowDetail:

 sys.stdout.write("New Warren at (" + str(x) + "," + str(y)

+ ")")

 self.__Landscape[x][y].Warren = Warren(self.__Variability)

 self.__WarrenCount += 1

def __CreateNewFox(self):

 x = random.randint(0, self.__LandscapeSize - 1)

 y = random.randint(0, self.__LandscapeSize - 1)

 while not self.__Landscape[x][y].Fox is None or

self.__Landscape[x][y].Terrain == "R":

 x = random.randint(0, self.__LandscapeSize - 1)

 y = random.randint(0, self.__LandscapeSize - 1)

 if self.__ShowDetail:

 sys.stdout.write(" New Fox at (" + str(x) + "," + str(y)

+ ")")

 self.__Landscape[x][y].Fox = Fox(self.__Variability)

 self.__FoxCount += 1

PYTHON 3
def __CreateNewWarren(self):

 x = random.randint(0, self.__LandscapeSize - 1)

 y = random.randint(0, self.__LandscapeSize - 1)

 while not self.__Landscape[x][y].Warren is None or

self.__Landscape[x][y].Terrain == "R":

 x = random.randint(0, self.__LandscapeSize - 1)

 y = random.randint(0, self.__LandscapeSize - 1)

 if self.__ShowDetail:

 print("New Warren at (", x, ",", y, ")", sep = "")

 self.__Landscape[x][y].Warren = Warren(self.__Variability)

 self.__WarrenCount += 1

def __CreateNewFox(self):

 x = random.randint(0, self.__LandscapeSize - 1)

 y = random.randint(0, self.__LandscapeSize - 1)

 while not self.__Landscape[x][y].Fox is None or

self.__Landscape[x][y].Terrain == "R":

 x = random.randint(0, self.__LandscapeSize - 1)

 y = random.randint(0, self.__LandscapeSize - 1)

 if self.__ShowDetail:

Page 17 of 111

 print(" New Fox at (", x, ",", y, ")", sep = "")

 self.__Landscape[x][y].Fox = Fox(self.__Variability)

 self.__FoxCount += 1

C#
private void CreateNewWarren()

{

 int x, y;

 do

 {

 x = Rnd.Next(0, LandscapeSize);

 y = Rnd.Next(0, LandscapeSize);

 } while ((Landscape[x, y].Warren != null) || (Landscape[x,

y].Terrain == 'R'));

 if (ShowDetail)

 {

 Console.WriteLine("New Warren at (" + x + "," + y + ")");

 }

 Landscape[x, y].Warren = new Warren(Variability);

 WarrenCount++;

}

private void CreateNewFox()

{

 int x, y;

 do

 {

 x = Rnd.Next(0, LandscapeSize);

 y = Rnd.Next(0, LandscapeSize);

 } while ((Landscape[x, y].Fox != null) || (Landscape[x,

y].Terrain == 'R'));

 if (ShowDetail) { Console.WriteLine(" New Fox at (" + x + ","

+ y + ")"); }

 Landscape[x, y].Fox = new Fox(Variability);

 FoxCount++;

}

PASCAL
procedure Simulation.CreateNewWarren();

 var

 x : integer;

 y : integer;

 begin

 repeat

 x := random(LandscapeSize);

 y := random(LandscapeSize);

 until (Landscape[x][y].Warren = Nil) and

(not(Landscape[x][y].Terrain = 'R'));

 if ShowDetail then

 writeln('New Warren at (', x, ',', y, ')');

 Landscape[x][y].Warren := Warren.New(Variability);

 inc(WarrenCount);

 end;

procedure Simulation.CreateNewFox();

 var

 x : integer;

 y : integer;

 begin

 randomize();

 repeat

 x := Random(LandscapeSize);

 y := Random(LandscapeSize);

Page 18 of 111

 until (Landscape[x][y].fox = Nil) and

(not(Landscape[x][y].Terrain = 'R'));

 if ShowDetail then

 writeln(' New Fox at (',x, ',',y, ')');

 Landscape[x][y].Fox := Fox.New(Variability);

 inc(FoxCount);

 end;

JAVA
private void CreateNewWarren()

{

 int x;

 int y;

 do

 {

 x = Rnd.nextInt(LandscapeSize);

 y = Rnd.nextInt(LandscapeSize);

 } while (Landscape[x][y].Warren != null ||

Landscape[x][y].Terrain == 'R');

 if (ShowDetail)

 {

 Console.println("New Warren at (" + x + "," + y + ")");

 }

 Landscape[x][y].Warren = new Warren(Variability);

 WarrenCount += 1;

}

private void CreateNewFox()

{

 int x;

 int y;

 do

 {

 x = Rnd.nextInt(LandscapeSize);

 y = Rnd.nextInt(LandscapeSize);

 }while (Landscape[x][y].Fox != null ||

Landscape[x][y].Terrain == 'R';

 if (ShowDetail)

 {

 Console.println(" New Fox at (" + x + "," + y + ")");

 }

 Landscape[x][y].Fox = new Fox(Variability);

 FoxCount += 1;

}

(v) Mark is for AO3 (evaluate)

****SCREEN CAPTURE(S)****
Must match code from part (c)(i) to (c)(iv). Code for these parts must be
sensible

1 mark: Screen capture(s) indicating which locations are land and which
are rivers
A. incorrect location of rivers if these match those set in parts (c)(ii)

Page 19 of 111

1

(d) (i) Marks are for AO3 (programming)

Structure of subroutine:
1. 1 mark: Subroutine created with correct name

CheckIfPathCrossesRiver I. private/public/protected modifiers

2. 1 mark: Subroutine has four parameters of appropriate data type,
which are the coordinates of the two locations to check the path
between I. self parameter in Python answers I. additional

parameters
3. 1 mark: Subroutine returns a Boolean value

Horizontal or vertical:

4. 1 mark: Repetition structure created that has start and end points
that correspond to one coordinate of the locations that need to be
checked on the column/row A. if start and end points include the
columns/rows that contain the fox and warren, even though this is
not necessary

5. 1 mark: Repetition structure will work regardless of whether or not
the fox is to the left/right of or above/below the warren (depending
on which direction is being checked) A. use of separate repetition
structures to achieve this

6. 1 mark: Within repetition structure a check is made of the type of
terrain at the appropriate coordinate

7. 1 mark: If a section of river is detected, subroutine will return true

R. if subroutine would return true when the path does not cross a
river

Other of vertical or horizontal:
8. 1 mark: Correct cells are checked regardless of whether or not the

fox is to the left/right of or above/below the warren A. if start and/or
end points include the columns/rows that contain the fox and
warren

9. 1 mark: If a river is detected, subroutine will return true; R. if
subroutine would return true when the path does not cross a river

MAX 7 if 2 and 5 are used instead of checking terrain type
MAX 5 if code does not use each of the relevant coordinates between
fox and warren

9

VB.NET
Private Function CheckIfPathCrossesRiver(ByVal FoxX As

Integer,

ByVal FoxY As Integer, ByVal WarrenX As Integer, ByVal WarrenY

As Integer) As Boolean

 Dim xChange As Integer

Page 20 of 111

 Dim yChange As Integer

 Dim x As Integer

 Dim y As Integer

 If FoxX - WarrenX > 0 Then

 xChange = 1

 Else

 xChange = -1

 End If

 If WarrenX <> FoxX Then

 x = WarrenX + xChange

 While x <> FoxX

 If Landscape(x, FoxY).Terrain = "R" Then

 Return True

 End If

 x += xChange

 End While

 End If

 If FoxY - WarrenY > 0 Then

 yChange = 1

 Else

 yChange = -1

 End If

 If WarrenY <> FoxY Then

 y = WarrenY + yChange

 While y <> FoxY

 If Landscape(FoxX, y).Terrain = "R" Then

 Return True

 End If

 y += yChange

 End While

 End If

 Return False

End Function

PYTHON 2
def CheckIfPathCrossesRiver(self, FoxX, FoxY, WarrenX,

WarrenY):

 if FoxX - WarrenX > 0:

 xChange = 1

 else:

 xChange = -1

 if WarrenX != FoxX:

 x = WarrenX + xChange

 while x != FoxX:

 if self.__Landscape[x][FoxY].Terrain == "R":

 return True

 x += xChange

 if FoxY - WarrenY > 0:

 yChange = 1

 else:

 yChange = -1

 if WarrenY != FoxY:

 y = WarrenY + yChange

 while y != FoxY:

 if self.__Landscape[FoxX][y].Terrain == "R":

 return True

 y += yChange

 return False

PYTHON 3
def CheckIfPathCrossesRiver(self, FoxX, FoxY, WarrenX,

WarrenY):

 if FoxX - WarrenX > 0:

Page 21 of 111

 xChange = 1

 else:

 xChange = -1

 if WarrenX != FoxX:

 x = WarrenX + xChange

 while x != FoxX:

 if self.__Landscape[x][FoxY].Terrain == "R":

 return True

 x += xChange

 if FoxY - WarrenY > 0:

 yChange = 1

 else:

 yChange = -1

 if WarrenY != FoxY:

 y = WarrenY + yChange

 while y != FoxY:

 if self.__Landscape[FoxX][y].Terrain == "R":

 return True

 y += yChange

 return False

C#
private bool CheckIfPathCrossesRiver(int FoxX, int FoxY, int

WarrenX, int WarrenY)

{

 int xChange, yChange, x, y;

 if (FoxX - WarrenX > 0)

 {

 xChange = 1;

 }

 else

 {

 xChange = -1;

 }

 if (WarrenX != FoxX)

 {

 x = WarrenX + xChange;

 while(x != FoxX)

 {

 if (Landscape[x, FoxY].Terrain == 'R')

 {

 return true;

 }

 x += xChange;

 }

 }

 if (FoxY - WarrenY > 0)

 {

 yChange = 1;

 }

 else

 {

 yChange = -1;

 }

 if (WarrenY != FoxY)

 {

 y = WarrenY + yChange;

 while(y != FoxY)

 {

 if (Landscape[FoxX, y].Terrain == 'R')

 {

 return true;

 }

 y += yChange;

Page 22 of 111

 }

 }

 return false;

}

PASCAL
function Simulation.CheckIfPathCrossesRiver(FoxX : integer;

Foxy : integer; WarrenX : integer; WarrenY : integer) : boolean;

 var

 xChange : integer;

 yChange : integer;

 x : integer;

 y : integer;

 Answer : boolean;

 begin

 Answer := False;

 if (FoxX - WarrenX) > 0 then

 xChange := 1

 else

 xChange := -1;

 if WarrenX <> FoxX then

 begin

 x := warrenX + xChange;

 if x <> FoxX then

 repeat

 if Landscape[x][FoxY].Terrain = 'R' then

 Answer := True;

 x := x + xChange;

 until x = FoxX;

 end;

 if (FoxY - WarrenY) > 0 then

 yChange := 1

 else

 yChange := -1;

 if WarrenY <> FoxY then

 begin

 y := WarrenY + yChange;

 if y <> FoxY then

 repeat

 if Landscape[FoxX][y].Terrain = 'R' then

 Answer := True;

 y := y + yChange;

 until y = FoxY;

 end;

 CheckIfPathCrossesRiver := Answer;

 end;

JAVA
private boolean CheckIfPathCrossesRiver(int FoxX, int FoxY,

int WarrenX, int WarrenY)

{

 int xChange, yChange;

 if (FoxX-WarrenX > 0)

 {

 xChange = 1;

 }

 else

 {

 xChange = -1;

 }

 if (WarrenX != FoxX)

 {

 for (int x = WarrenX + xChange; x != FoxX; x = x + xChange)

Page 23 of 111

 {

 if (Landscape[x][FoxY].Terrain == 'R')

 {

 return true;

 }

 }

 }

 if (FoxY - WarrenY > 0)

 {

 yChange = 1;

 }

 else

 {

 yChange = -1;

 }

 if (WarrenY != FoxY)

 {

 for (int y = WarrenY + yChange; y != FoxY; y = y + yChange)

 {

 if (Landscape[FoxX][y].Terrain == 'R')

 {

 return true;

 }

 }

 }

 return false;

}

(ii) Marks are for AO3 (programming)
1 mark: CheckIfPathCrossesRiver subroutine is called within the two

repetition structures, with the coordinates of the warren and fox as
parameters
1 mark: If the subroutine returns true, the fox will not eat any rabbits in
the warren, otherwise it will eat rabbits if the warren is near enough

2

VB.NET
Private Sub FoxesEatRabbitsInWarren(ByVal WarrenX As Integer,

ByVal WarrenY As Integer)

 Dim FoodConsumed As Integer

 Dim PercentToEat As Integer

 Dim Dist As Double

 Dim RabbitsToEat As Integer

 Dim RabbitCountAtStartOfPeriod As Integer =

Landscape(WarrenX, WarrenY).Warren.GetRabbitCount()

 For FoxX = 0 To LandscapeSize - 1

 For FoxY = 0 To LandscapeSize - 1

 If Not Landscape(FoxX, FoxY).Fox Is Nothing Then

 If Not CheckIfPathCrossesRiver(FoxX, FoxY, WarrenX,

WarrenY) Then

 Dist = DistanceBetween(FoxX, FoxY, WarrenX,

WarrenY)

 If Dist <= 3.5 Then

 PercentToEat = 20

 ElseIf Dist <= 7 Then

 PercentToEat = 10

 Else

 PercentToEat = 0

 End If

 RabbitsToEat = CInt(Math.Round(CDbl(PercentToEat *

RabbitCountAtStartOfPeriod / 100)))

 FoodConsumed = Landscape(WarrenX,

WarrenY).Warren.EatRabbits(RabbitsToEat)

Page 24 of 111

 Landscape(FoxX, FoxY).Fox.GiveFood(FoodConsumed)

 If ShowDetail Then

 Console.WriteLine(" " & FoodConsumed & " rabbits

eaten by fox at (" & FoxX & "," & FoxY & ").")

 End If

 End If

 End If

 Next

 Next

End Sub

PYTHON 2
def __FoxesEatRabbitsInWarren(self, WarrenX, WarrenY):

 RabbitCountAtStartOfPeriod =

self.__Landscape[WarrenX][WarrenY].Warren.GetRabbitCount()

 for FoxX in range(0, self.__LandscapeSize):

 for FoxY in range (0, self.__LandscapeSize):

 if not self.__Landscape[FoxX][FoxY].Fox is None:

 if not self.CheckIfPathCrossesRiver(FoxX, FoxY,

WarrenX, WarrenY): #INDENTATION CHANGED AFTER THIS LINE

 Dist = self.__DistanceBetween(FoxX, FoxY, WarrenX,

WarrenY)

 if Dist <= 3.5:

 PercentToEat = 20

 elif Dist <= 7:

 PercentToEat = 10

 else:

 PercentToEat = 0

 RabbitsToEat = int(round(float(PercentToEat *

RabbitCountAtStartOfPeriod / 100)))

 FoodConsumed =

self.__Landscape[WarrenX][WarrenY].Warren.EatRabbits(Rabbit

sToEat)

 self.__Landscape[FoxX][FoxY].Fox.GiveFood(FoodConsume

d)

 if self.__ShowDetail:

 sys.stdout.write(" " + str(FoodConsumed) + " rabbits

eaten by fox at (" + str(FoxX) + "," + str(FoxY) + ")." + "\n")

PYTHON 3
def __FoxesEatRabbitsInWarren(self, WarrenX, WarrenY):

 RabbitCountAtStartOfPeriod =

self.__Landscape[WarrenX][WarrenY].Warren.GetRabbitCount()

 for FoxX in range(0, self.__LandscapeSize):

 for FoxY in range (0, self.__LandscapeSize):

 if not self.__Landscape[FoxX][FoxY].Fox is None:

 if not self.CheckIfPathCrossesRiver(FoxX, FoxY,

WarrenX, WarrenY): #INDENTATION CHANGED AFTER THIS LINE

 Dist = self.__DistanceBetween(FoxX, FoxY, WarrenX,

WarrenY)

 if Dist <= 3.5:

 PercentToEat = 20

 elif Dist <= 7:

 PercentToEat = 10

 else:

 PercentToEat = 0

 RabbitsToEat = int(round(float(PercentToEat *

RabbitCountAtStartOfPeriod / 100)))

 FoodConsumed =

self.__Landscape[WarrenX][WarrenY].Warren.EatRabbits(Rabbit

sToEat)

self.__Landscape[FoxX][FoxY].Fox.GiveFood(FoodConsumed)

Page 25 of 111

 if self.__ShowDetail:

 print(" ", FoodConsumed, " rabbits eaten by fox

at (", FoxX, ",", FoxY, ").", sep = "")

C#
private void FoxesEatRabbitsInWarren(int WarrenX, int

WarrenY)

{

 int FoodConsumed;

 int PercentToEat;

 double Dist;

 int RabbitsToEat;

 int RabbitCountAtStartOfPeriod = Landscape[WarrenX,

WarrenY].Warren.GetRabbitCount();

 for (int FoxX = 0; FoxX < LandscapeSize; FoxX++)

 {

 for (int FoxY = 0; FoxY < LandscapeSize; FoxY++)

 {

 if (Landscape[FoxX, FoxY].Fox != null)

 {

 if (!CheckIfPathCrossesRiver(FoxX, FoxY, WarrenX,

WarrenY))

 {

 Dist = DistanceBetween(FoxX, FoxY, WarrenX,

WarrenY);

 if (Dist <= 3.5)

 {

 PercentToEat = 20;

 }

 else if (Dist <= 7)

 {

 PercentToEat = 10;

 }

 else

 {

 PercentToEat = 0;

 }

 RabbitsToEat =

(int)Math.Round((double)(PercentToEat *

RabbitCountAtStartOfPeriod / 100.0));

 FoodConsumed = Landscape[WarrenX,

WarrenY].Warren.EatRabbits(RabbitsToEat);

 Landscape[FoxX, FoxY].Fox.GiveFood(FoodConsumed);

 if (ShowDetail)

 {

 Console.WriteLine(" " + FoodConsumed + " rabbits

eaten by fox at (" + FoxX + "," + FoxY + ").");

 }

 }

 }

 }

 }

}

PASCAL
procedure Simulation.FoxesEatRabbitsInWarren(WarrenX :

integer; WarrenY : integer);

 var

 FoodConsumed : integer;

 PercentToEat : integer;

 Dist : double;

 RabbitsToEat : integer;

 RabbitCountAtStartOfPeriod : integer;

Page 26 of 111

 FoxX : integer;

 FoxY : integer;

 begin

 RabbitCountAtStartOfPeriod :=

Landscape[WarrenX][WarrenY].Warren.GetRabbitCount();

 for FoxX := 0 to LandscapeSize - 1 do

 for FoxY := 0 to LandscapeSize - 1 do

 if not(Landscape[FoxX][FoxY].fox = nil) then

 if not(CheckIfPathCrossesRiver(FoxX, Foxy,

WarrenX, WarrenY)) then

 begin

 Dist := DistanceBetween(FoxX, FoxY, WarrenX,

WarrenY);

 if Dist <= 3.5 then

 PercentToEat := 20

 else if Dist <= 7 then

 PercentToEat := 10

 else

 PercentToEat := 0;

 RabbitsToEat := round(PercentToEat *

RabbitCountAtStartOfPeriod / 100);

 FoodConsumed :=

Landscape[WarrenX][WarrenY].Warren.EatRabbits(RabbitsToEat)

;

 Landscape[FoxX][FoxY].fox.GiveFood(FoodConsum

ed);

 if ShowDetail then

 writeln(' ', FoodConsumed, ' rabbits eaten by

fox at (', FoxX, ',', FoxY, ')');

 end;

 end;

JAVA
private void FoxesEatRabbitsInWarren(int WarrenX, int

WarrenY)

{

 int FoodConsumed;

 int PercentToEat;

 double Dist;

 int RabbitsToEat;

 int RabbitCountAtStartOfPeriod =

Landscape[WarrenX][WarrenY].Warren.GetRabbitCount();

 for(int FoxX = 0; FoxX < LandscapeSize; FoxX++)

 {

 for(int FoxY = 0; FoxY < LandscapeSize; FoxY++)

 {

 if (Landscape[FoxX][FoxY].Fox != null)

 {

 if (!CheckIfPathCrossesRiver(FoxX, FoxY, WarrenX,

WarrenY))

 {

 Dist = DistanceBetween(FoxX, FoxY, WarrenX,

WarrenY);

 if (Dist <= 3.5)

 {

 PercentToEat = 20;

 }

 else if (Dist <= 7)

 {

 PercentToEat = 10;

 }

 else

 {

 PercentToEat = 0;

Page 27 of 111

 }

 RabbitsToEat =

(int)(Math.round((double)(PercentToEat *

RabbitCountAtStartOfPeriod / 100)));

 FoodConsumed =

Landscape[WarrenX][WarrenY].Warren.EatRabbits(RabbitsToEat)

;

Landscape[FoxX][FoxY].Fox.GiveFood(FoodConsumed);

 if (ShowDetail)

 {

 Console.println(" " + FoodConsumed + " rabbits

eaten by fox at (" + FoxX + "," + FoxY + ").");

 }

 }

 }

 }

 }

}

(iii) Mark is for AO3 (evaluate)

****SCREEN CAPTURE(S)****
Must match code from part (d)(i) to (d)(ii). Code for these parts must be
sensible

1 mark: Screen capture(s) show that no rabbits are eaten in the warren
at (1, 1)

Note: Exact rabbit numbers killed/born do not need to match
screenshot, but the start and end periods should be 0 and 1.

1

[35]

Q4.
(a)

 List

ListLength New p q [1] [2] [3] [4] [5]

4 48 – – 19 43 68 107

 1

 2

 3

 4 107

 3 68

 48

5

Page 28 of 111

1 mark: 5 is the only value written in the ListLength column

1 mark: 1, 2, 3 in that order are the only values written in the p column

1 mark: 4, 3 in that order are the only values written in the q column

1 mark: final list is: 19, 43, 48, 68, 107

Ignore values being repeated unnecessarily in trace
MAX 3 if any incorrect values in table

4

(b) Inserts an item/variable New into list at correct position/preserving order//into

sorted list (or equivalent);
1

(c) Heap is (pool of) free/unused/available memory;

Memory allocated/deallocated at run-time (to/from dynamic data structure(s));
Max 1

[6]

Q5.
(a) It hides the detail of how the list will be stored/implemented

from the programmer // a programmer working on the rest of
the program does not need to know how the LinkedList

class works // a programmer working on the rest of the
program needs only concern themselves with the interface to
the LinkedList class;

A. "user" for "programmer" as BOD mark
1

(b) The procedures/functions are public as programmer (writing
the rest of the program) will need access to the operations
defined in the procedures and functions from outside of the
class / elsewhere in the program (so they must be public); A.

just one of procedures or functions A. Procedures/functions
will be accessible
The data items are private to prevent them being changed
directly from outside of the class // to avoid the integrity of
the data structure being damaged / changed accidentally
(from outside the class); A. "elsewhere in program" for
"outside of the class"
So that the implementation of LinkedList can be changed

and programs written using only the public functions and
procedures will still work;
MAX 2

2

(c) OVERALL GUIDANCE:

Solutions should be marked on this basis:

• Up to 5 marks for correctly locating the position to
delete the item from.

• Up to 3 marks for deleting the item and updating
pointers as required.

The addition of any unnecessary steps that do not stop the
algorithm working should not result in a reduction in marks.

Page 29 of 111

Responses should be accepted in pseudo-code or structured
English but not in prose.

If you are unsure about the correctness of a solution
please refer it to a team leader.

SPECIFIC MARKING POINTS:

Correctly locating deletion point (5 marks):

1. Initialising Current to Start before any loop;

2. Use of loop to attempt to move through list (regardless
of correct terminating condition);

3. Advancing Current within loop;

4. Correctly maintaining the Previous pointer within loop;

5. Sensible condition to identify position to delete from
(suitable terminating condition for loop);

Correctly deleting item (3 marks):

6. Update Next pointer of node before node to delete to

point to node after it;
7. Test if item to delete was first item in list, and if so

update Start pointer instead of Next pointer of node

before the one to delete;
8. Release the memory used by the item being deleted

back to the operating system;

Mark point 2 should be awarded if, within the loop, Current

is being changed (even if not correctly changed).

Mark point 4 can be awarded if Previous is set to Current

before Current is changed, even if Current is not being

correctly updated.

Mark point 5 can be awarded if there is a sensible condition,
even if Current is not correctly updated.

Mark point 6 can be awarded even if the value of Previous

was not correctly maintained in the loop.

Mark points 6 and 7 can only be awarded if Current has not

already been released (or attempted to be released).

Mark point 8 should only be awarded if this is done after and
a loop to search for the item to delete, regardless of whether
or not the correct item would be found or if it is done inside
the loop but also within an if statement that correctly
identifies the item to delete.

A. Deletion takes place inside of loop if the correct item to
delete had been identified with an if statement and the loop
will be exited at some point after deletion.
A.. Use of any type of condition controlled loop, as long as
logic is correct.

A. Use of alternative variable names and instructions, so
long as the meaning is clear.

Page 30 of 111

A. Use of clear indentation to indicate start/end of iteration
and selection structures.
A. Responses written in structured English, so long as
variable names are used and the descriptions of what will be
done are specific.
A. Use of Boolean variable to control loop as long as it is set
under the correct conditions and has been initialised.
R. Responses written in prose.
R. Do not award mark points if incorrect variable names

have been used, but allow minor misspellings of variable
names.

EXAMPLE SOLUTIONS:

The examples below are complete solutions that would
achieve full marks. Refer recursive solutions to Team
Leaders.

Example 1
If Start.DataValue = DelItem Then

 Start ← Start.Next
 Release(Start)

Else

 Current ← Start
 Repeat

 Previous ← Current

 Current ← Current.Next
 Until Current.DataValue = DelItem

 Previous.Next ← Current.Next
 Release(Current)

EndIf

Example 2

Current ← Start
While Current.DataValue DelItem

 Previous ← Current

 Current ← Current.Next
EndWhile

If Current = Start Then

 Start ← Current.Next
Else

 Previous.Next ← Current.Next
EndIf

Release(Current)

Example 3
If Start.DataValue = DelItem Then

 Start ← Start.Next
 Release(Start)

Else

 Deleted ← False

 Current ← Start
 While Deleted = False

 If Current.DataValue = DelItem Then

Page 31 of 111

 Previous.Next ← Current.Next
 Release(Current)

 Deleted ← True
 Else

 Previous ← Current

 Current ← Current.Next
 EndIf

 EndWhile

EndIf

8

[11]

Q6.
(a) Implementation One would need to use a linear search //

would need to look at every word in the array (before the one
that is being searched for) // lookup time is proportional to
number of words in list // lookup is O(N); N.E. “search”
without further clarification that this would be linear
Implementation Two would use the hash function/hashing
to directly calculate where the word would be stored // could
jump directly to the correct position/location/index for the
word in the array // lookup time is constant regardless of how
many words in list // lookup is O(1); A. No need to go

through words in list
2

(b) The (record for) each word/both words would be stored at
the same position/index/location in the array;
A. The second word would be stored over/replace the first;
N.E. A collision has occurred

Store record/word in the next available position in the array //
store a pointer (in each array position) that points to a list of
records that have all collided at the position // rehash the
word;
A. Idea that each array position could store more than one

record e.g. five records per location, if explained.
A. Example of what “next available” might be.
R. The use of a different hashing function at all times ie not
just rehashing.

2

(c) The hash function could compute the same value/location
for more than one/two English word(s), so need to verify if
the English word stored at the location is the one that is
being looked up;
To avoid returning a French translation that is for a different

English word, which is stored at the same location as the
word that is being looked up // if a collision occurred (when
storing the words) it will not be possible to tell if the
translation is correct;

A. More than one word could be stored in each location
R. So that French to English translation can be done
MAX 1

1

Page 32 of 111

[5]

Q7.
(a) BoardDimension;

R if any additional code
R if spelt incorrectly

I case
1

(b) DisplayWhoseTurnItIs // DisplayWinner // DisplayBoard //

WriteWithMsg (VB6 only) // WriteLineWithMsg (VB6 only)// WriteLine

(VB6 only)// WriteNoLine (VB6 only)// ReadLine (VB6 only);

R if any additional code
R if spelt incorrectly
I case

1

(c) Board;

R if any additional code
R if spelt incorrectly
I case

1

(d) Delete the three lines and add one copy of the line after the If statement(s);
1

(e) If (PlayAgain contains) a lowercase letter; it is converted into uppercase;
2

(f) The 123 in the 2nd condition should be 122;
A Change <= 123 to <123
The 3rd column should have condition values of N and N // the 1st column

should have condition values of N and N;

There should only be an X in the last column; there should not be an X in any
of the first three columns; //
there should be a Y (A other sensible indicator) in the last column; there
should be Xs (A other sensible indicator) in the first three columns;

Note for examiners

Marks can be awarded for answers that show a corrected version of
Table 4. An example of a possible correct Table 4:

Conditions
>= 97

N N Y Y

<= 122

N Y N Y

Action
Change value of PlayAgain

 X

MAX 3

[9]

Q8.
(a) (i) Repetition structure in the correct place in the code with correct

termination condition;
Correct error message displayed;

Error message will be displayed every time an invalid name has been

Page 33 of 111

entered and will only be displayed when an invalid name has been
entered;
Getting name from user is inside the repetition structure;

A Minor typos in error message
I Capitalisation and spacing in error message

Pascal
...

Writeln;

Repeat

 Write('Please enter your name: ');

 Readln(PlayerName);

 If Length(PlayerName) = 0

 Then Writeln('You must enter a name');

Until Length(PlayerName) > 0;

Writeln;

...

Alternative answer:
...

Writeln;

Repeat

 Write('Please enter your name: ');

 Readln(PlayerName);

 If PlayerName = ''

 Then Writeln('You must enter a name');

Until PlayerName <> '';

Writeln;

...

Alternative answer:
...

Writeln;

PlayerName := '';

While PlayerName = ''

 Do

 Begin

 Write('Please enter your name: ');

 Readln(PlayerName);

 If Length(PlayerName) = 0

 Then Writeln('You must enter a name');

 End;

Writeln;

...

VB.Net
...

Console.WriteLine()

Do

 Console.Write("Please enter your name: ")

 PlayerName = Console.ReadLine

 If PlayerName.Length = 0 Then

 Console.WriteLine("You must enter a name")

 End If

Loop Until PlayerName.Length > 0

Console.WriteLine()

...

Alternative answer:
...

Console.WriteLine()

Page 34 of 111

Do

 Console.Write("Please enter your name: ")

 PlayerName = Console.ReadLine

 If PlayerName = "" Then

 Console.WriteLine("You must enter a name")

 End If

Loop Until PlayerName <> ""

Console.WriteLine()

...

Alternative answer:
...

Console.WriteLine()

PlayerName = ""

While PlayerName = ""

 Console.Write("Please enter your name: ")

 PlayerName = Console.ReadLine

 If PlayerName = "" Then

 Console.WriteLine("You must enter a name")

 End If

End While

Console.WriteLine()

...

VB6
...

WriteLine("")

Do

PlayerName = ReadLine("Please enter your name: ")

 If Len(PlayerName) = 0 Then

 WriteLineWithMsg ("You must enter a name")

 End If

Loop Until Len(PlayerName) > 0

WriteLine("")

...

Alternative answer:
...

WriteLine("")

Do

 PlayerName = ReadLine("Please enter your name: ")

 If PlayerName = "" Then

 WriteLineWithMsg ("You must enter a name")

 End If

Loop Until PlayerName <>""

WriteLine("")

...

Alternative answer:
...

WriteLine("")

PlayerName = ""

While PlayerName = ""

PlayerName = ReadLine("Please enter your name: ")

 If PlayerName = "" Then

 WriteLineWithMsg ("You must enter a name")

 End If

Wend

WriteLine("")

...

Alternative answers could use some of the following instead of
WriteLineWithMsg:

Page 35 of 111

Console.Text = Console.Text & ...

WriteLine

WriteWithMsg

Msgbox

WriteNoLine

Python 2
...

print

Playername = ''

while len(PlayerName) == 0:

 print 'Please enter your name: '

 PlayerName = raw_input()

 if len(PlayerName) == 0:

 print 'You must enter a name'

print

Alternative answer:
...

print

PlayerName = ''

while PlayerName == '':

 print 'Please enter your name: ',

 PlayerName = raw_input()

 if PlayerName == '':

 print 'You must enter a name'

print

Python 3
...

print()

PlayerName = ''

while len(PlayerName) == 0:

 print('Please enter your name: '),

 PlayerName = input()

 if len(PlayerName) == 0:

 print('You must enter a name')

print()

Alternative answer:
...

print()

PlayerName = ''

while PlayerName == '':

 print('Please enter your name: '),

 PlayerName = input()

 if PlayerName == '':

 print('You must enter a name')

print()

...

Java
...

console.println();

do {

 playerName = console.readLine("Please enter your name: ");

 if (playerName.length() == 0) {

 console.println("You must enter a name");

 }

} while (playerName.length() == 0);

console.println();

...

Page 36 of 111

Alternative answer:
...

console.println();

do {

 playerName = console.readLine("Please enter your name: ");

 if (playerName.equals("") {

 console.println("You must enter a name");

 }

} while (playerName.equal(""));

console.println();

...

4

(ii) ****SCREEN CAPTURE****
Must match code from part (a)(i), including prompts on screen capture
matching those in code. Code for (a)(i) must be sensible.

Mark as follows:
No name entered and either error message displayed or asked to enter
name; R If does not match code for part (a)(i)
Name of Emily entered and no error message displayed;

2

(b) (i) Selection structure that checks if the current and last card have the
same rank; A equivalent logic
Selection structure that checks if the suit of the next card is higher than
the suit of the last card; A equivalent logic
A one selection structure with two conditions
Note: if overall logic for the first 2 mark points is not correct only one of
the 2 marks is to be given
Higher assigned value of True if the two cards have the same rank and

the suit of the next card is higher; R If Higher always assigned the value

of True

Value of Higher is returned to the calling routine; R if no evidence of

code used to calculate value of Higher when the two cards have the

same rank

MAX 3 if any existing functionality is incorrectly changed or if an
incorrect value is returned under any circumstances

Pascal
Function IsNextCardHigher(LastCard, NextCard : TCard) :

Boolean;

 Var

 Higher : Boolean;

 Begin

 Higher := False;

 If NextCard.Rank > LastCard.Rank

 Then Higher := True;

 If NextCard.Rank = LastCard.Rank

 Then

 If NextCard.Suit > LastCard.Suit

 Then Higher := True;

 IsNextCardHigher := Higher;

 End;

Alternative answer:
Function IsNextCardHigher(LastCard, NextCard : TCard) :

Boolean;

 Var

Page 37 of 111

 Higher : Boolean;

 Begin

 If NextCard.Rank > LastCard.Rank

 Then Higher := True

 Else

 If NextCard.Rank < LastCard.Rank

 Then Higher := False

 Else

 If NextCard.Suit > LastCard.Suit

 Then Higher := True

 Else Higher := False;

 IsNextCardHigher := Higher;

 End;

Alternative answer:
Function IsNextCardHigher(LastCard, NextCard : TCard) :

Boolean;

 Var

 Higher : Boolean;

 Begin

 If NextCard.Rank > LastCard.Rank

 Then Higher := True

 Else Higher := (NextCard.Rank = LastCard.Rank) AND

(NextCard.Suit > LastCard.Suit);

 IsNextCardHigher := Higher;

End;

VB.Net
Function IsNextCardHigher(ByVal LastCard As TCard, ByVal

NextCard As TCard) As Boolean

 Dim Higher As Boolean

 Higher = False

 If NextCard.Rank > LastCard.Rank Then

 Higher = True

 End If

 If NextCard.Rank = LastCard.Rank Then

 If NextCard.Suit > LastCard.Suit Then

 Higher = True

 End If

 End If

 Return Higher

End Function

Alternative answer:
Function IsNextCardHigher(ByVal LastCard As TCard, ByVal

NextCard As TCard) As Boolean

 Dim Higher As Boolean

 If NextCard.Rank > LastCard.Rank Then

 Higher = True

 ElseIf NextCard.Rank < LastCard.Rank Then

 Higher = False

 ElseIf NextCard.Suit > LastCard.Suit Then

 Higher = True

 Else

 Higher = False

 End If

 Return Higher

End Function

Alternative answer:
Function IsNextCardHigher(ByVal LastCard As TCard, ByVal

NextCard As TCard) As Boolean

 Dim Higher As Boolean

Page 38 of 111

 Higher = False

 If NextCard.Rank > LastCard.Rank Then

 Higher = True

 ElseIf (NextCard.Rank = LastCard.Rank) And (NextCard.Suit >

LastCard.Suit) Then

 Higher = True

 End If

 Return Higher

End Function

VB6
Private Function IsNextCardHigher(ByRef LastCard As TCard,

ByRef NextCard As TCard) As Boolean

 Dim Higher As Boolean

 Higher = False

 If NextCard.Rank > LastCard.Rank Then

 Higher = True

 End If

 If NextCard.Rank = LastCard.Rank Then

 If NextCard.Suit > LastCard.Suit Then

 Higher = True

 End If

 End If

 IsNextCardHigher = Higher

End Function

Alternative answer:
Private Function IsNextCardHigher(ByRef LastCard As TCard,

ByRef NextCard As TCard) As Boolean

 Dim Higher As Boolean

 If NextCard.Rank > LastCard.Rank Then

 Higher = True

 ElseIf NextCard.Rank < LastCard.Rank Then

 Higher = False

 ElseIf NextCard.Suit > LastCard.Suit Then

 Higher = True

 Else

 Higher = False

 End If

 IsNextCardHigher = Higher

End Function

Alternative answer:
Private Function IsNextCardHigher(ByRef LastCard As TCard,

ByRef NextCard As TCard) As Boolean

 Dim Higher As Boolean

 Higher = False

 If NextCard.Rank > LastCard.Rank Then

 Higher = True

 ElseIf (NextCard.Rank = LastCard.Rank) And (NextCard.Suit >

LastCard.Suit) Then

 Higher = True

 End If

 IsNextCardHigher = Higher

End Function

Python 2
def IsNextCardHigher(LastCard, NextCard):

 Higher = False

 if NextCard.Rank > LastCard.Rank:

 Higher = True

 if NextCard.Rank == LastCard.Rank:

 if NextCard.Suit > LastCard.Suit:

Page 39 of 111

 Higher = True

 return Higher

Alternative answer:
def IsNextCardHigher(LastCard, NextCard):

 Higher = False

 if NextCard.Rank > LastCard.Rank:

 Higher = True

 else:

 if NextCard.Rank < LastCard.Rank:

 Higher = False

 else:

 if NextCard.Suit > LastCard.Suit:

 Higher = True

 else:

 Higher = False

 return Higher

Alternative answer:
def IsNextCardHigher(LastCard, NextCard):

 Higher = False

 if NextCard.Rank > LastCard.Rank:

 Higher = True

 elif NextCard.Rank == LastCard.Rank and NextCard.Suit >

LastCard.Suit:

 Higher = True

 return Higher

Python 3
def IsNextCardHigher(LastCard, NextCard):

 Higher = False

 if NextCard.Rank > LastCard.Rank:

 Higher = True

 if NextCard.Rank == LastCard.Rank:

 if NextCard.Suit > LastCard.Suit:

 Higher = True

 return Higher

Alternative answer:
def IsNextCardHigher(LastCard, NextCard):

 Higher = False

 if NextCard.Rank > LastCard.Rank:

 Higher = True

 else:

 if NextCard.Rank < LastCard.Rank:

 Higher = False

 else:

 if NextCard.Suit > LastCard.Suit:

 Higher = True

 else:

 Higher = False

 return Higher

Alternative answer:
def IsNextCardHigher(LastCard, NextCard):

 Higher = False

 if NextCard.Rank > LastCard.Rank:

 Higher = True

 elif NextCard.Rank == LastCard.Rank and NextCard.Suit >

LastCard.Suit:

 Higher = True

 return Higher

Page 40 of 111

Java
boolean isNextCardHigher(TCard lastCard, TCard nextCard){

 boolean higher;

 higher = false;

 console.println(lastCard.rank);

 console.println(nextCard.rank);

 if (nextCard.rank > lastCard.rank){

 higher = true;

 }

 if (nextCard.rank == lastCard.rank) {

 if (nextCard.suit > lastCard.suit) {

 higher = true;

 }

 }

 return higher;

}

Alternative answer:
boolean isNextCardHigher(TCard lastCard, TCard nextCard){

 boolean higher;

 higher = false;

 console.println(lastCard.rank);

 console.println(nextCard.rank);

 if (nextCard.rank > lastCard.rank){

 higher = true;

 } else if (lastCard.rank == nextCard.rank) {

 if (nextCard.suit > lastCard.suit) {

 higher = true;

 }

 }

 return higher;

}

Alternative answer:
boolean isNextCardHigher(TCard lastCard, TCard nextCard){

 boolean higher;

 higher = false;

 console.println(lastCard.rank);

 console.println(nextCard.rank);

 if (nextCard.rank > lastCard.rank){

 higher = true;

 }

 if (nextCard.rank == lastCard.rank) && (nextCard.suit >

lastCard.suit) {

 higher = true;

 }

 return higher;

}

4

(ii) ****SCREEN CAPTURE****
Must match code from part (b)(i), including prompts on screen capture
matching those in code. Code for (b)(i) must be sensible.

Mark as follows:

y entered by user results in message Well done! You guessed
correctly.

Followed by n entered by user resulting in message Well done! You
guessed correctly.;

I If first y entered and first message not shown on screen capture

A If code for part (b)(i) has been attempted and screen capture matches
what would be produced by code for (b)(i)

Page 41 of 111

Followed by y entered by user resulting in message Well done! You
guessed correctly.;

R If test is for a random (shuffled deck) game
R If answer for 34 has no code for checking if the ranks of the two cards
are equal / not equal

2

(c) (i) Modified message in sensible place in code Do you think the next
card will be higher than the last card (enter y or n or j to

play a joker)?;

A Any sensible message
A Two messages instead of a modified message

A No evidence in (c)(i) of this modified message being in the correct
place in the code if there is supporting evidence from screen capture(s)
for (c)(iii) that it is in the correct place

Pascal
...

Var

Choice : Char;

Begin

 Write('Do you think the next card will be higher than the last

card (enter y or n or j to play a joker)? ');

 Readln(Choice);

...

VB.Net
...

Dim Choice As Char

Console.Write("Do you think the next card will be higher than

the last card (enter y or n or j to play a joker)? ")

Choice = Console.ReadLine

...

VB6
...

 Dim Choice As String

 Choice = ReadLine("Do you think the next card will be higher

than the last card (enter y or n or j to play a joker)? ")

 GetChoiceFromUser = Choice...

Python 2
...

print 'Do you think the next card will be higher than the last

card (enter y or n or j to play a joker)? '

Choice = raw_input()

...

Python 3
...

 print('Do you think the next card will be higher than the last

card (enter y or n or j to play a joker)? ')

 Choice = input()

...

Java
...

choice = console.readChar("Do you think the next card will be

higher than the last card (enter y or n or j to play a joker)?

");

Page 42 of 111

...

1

(ii) Appropriately named variable (eg NoOfJokers), of sensible data type,

given initial value of 2;

Modify loop condition so that y, n and j are all allowed;

Additional condition so that j is only allowed if NoOfJokers is greater

than 0; correct logic used;
A Player loses game if they try to play a 3rd joker as long as correct final
score is displayed – note that using this method it is possible that a
selection structure is being used instead of a modified loop;;

A Equivalent logic

Value of NoOfJokers decremented by 1 inside a selection structure;

which has correct condition to check if j was option chosen by user;

Modify selection structure so that correct guess is called if either the

user has guessed correctly or the player used a Joker; R If code will not
allow the player to always use two jokers

Alternative answer:
Appropriately named variable (e.g.NoOfJokers) of sensible data type,

given initial value of 0; A value of 0 not explicitly given if code would
work without this

Modify loop condition so that y, n and j are all allowed;

Additional condition so that j is only allowed if NoOfJokers is less than

2; correct logic used;
A Player loses game if they try to play a 3rd joker as long as correct final
score is displayed – note that using this method it is possible that a
selection structure is being used instead of a modified loop;;

A Equivalent logic

Value of NoOfJokers incremented by 1 inside a selection structure;

which has correct condition to check if j was option chosen by user;

Modify selection structure so that correct guess is called if either the
user has guessed correctly or the player used a Joker; R If code will not

allow the player to always use two jokers

MAX 5 if, when the game continues, there are unwanted side-effects
(e.g. 3rd joker allowed, Deck changed when it shouldnߢt be, score goes

up when j entered for a third time, etc...)

Pascal
...

Choice : Char;

NoOfJokers : Integer;

Begin

 NoOfJokers := 2;

 GameOver := False;

...

 While (NoOfCardsTurnedOver < 52) And Not GameOver

...

 Repeat

Page 43 of 111

 Choice := GetChoiceFromUser;

 Until (Choice = 'y') Or (Choice = 'n') Or (Choice = 'j')

And (NoOfJokers > 0);

 If Choice = 'j'

 Then NoOfJokers := NoOfJokers - 1;

 DisplayCard(NextCard);

 NoOfCardsTurnedOver := CardsTurnedOver + 1;

 Higher := IsNextCardHigher(LastCard, NextCard);

 If Higher And(Choice='y') Or Not Higher And (Choice = 'n')

Or (Choice = 'j')

 Then

 Begin

 DisplayCorrectGuessMessage(NoOfCardsTurnedOver);

...

A equivalent logic for condition (eg NoOfJokers >=1)

Alternative answer:
...

Choice : Char;

NoOfJokers : Integer;

Begin

 NoOfJokers := 0;

 GameOver := False;

...

 While (NoOfCardsTurnedOver< 52) And Not GameOver

...

 Repeat

 Choice := GetChoiceFromUser;

 Until (Choice = 'y') Or (Choice = 'n') Or (Choice = 'j')

And (NoOfJokers <=1);

 If Choice = 'j'

 Then NoOfJokers := NoOfJokers + 1;

 DisplayCard(NextCard);

 NoOfCardsTurnedOver := CardsTurnedOver + 1;

 Higher := IsNextCardHigher(LastCard, NextCard);

 If Higher And(Choice='y') Or Not Higher And (Choice = 'n')

Or (Choice = 'j')

 Then

 Begin

 DisplayCorrectGuessMessage(NoOfCardsTurnedOver);

...

A equivalent logic for condition (eg NoOfJokers < 2)

VB.Net
...

Dim Choice As Char

Dim NoOfJokers As Integer

NoOfJokers = 2

GameOver = False

...

While NoOfCardsTurnedOver < 52 And Not GameOver

 ...

 Do

 Choice = GetChoiceFromUser()

 Loop Until Choice = "y" Or Choice = "n" Or Choice = "j" And

NoOfJokers > 0

 If Choice = "j" Then

 NoOfJokers = NoOfJokers - 1

 End If

 DisplayCard(NextCard)

 CardsTurnedOver = CardsTurnedOver + 1

Page 44 of 111

 Higher = IsNextCardHigher(LastCard, NextCard)

 If Higher And Choice = "y" Or Not Higher And Choice = "n" Or

Choice = "j" Then

 DisplayCorrectGuessMessage(NoOfCardsTurnedOver)

...

A equivalent logic for condition (eg NoOfJokers >= 1)

Alternative Answer:
...

Dim Choice As Char

Dim NoOfJokers As Integer

NoOfJokers = 0

GameOver = False

...

While NoOfCardsTurnedOver < 52 And Not GameOver

 ...

 Do

 Choice = GetChoiceFromUser()

 Loop Until Choice = "y" Or Choice = "n" Or Choice = "j" And

NoOfJokers <= 1

 If Choice = "j" Then

 NoOfJokers = NoOfJokers + 1

 End If

 DisplayCard(NextCard)

 CardsTurnedOver = CardsTurnedOver + 1

 Higher = IsNextCardHigher(LastCard, NextCard)

 If Higher And Choice = "y" Or Not Higher And Choice = "n" Or

Choice = "j" Then

 DisplayCorrectGuessMessage(NoOfCardsTurnedOver)

...

A equivalent logic for condition (eg NoOfJokers < 2)

VB6
...

Dim Choice As String

Dim NoOfJokers As Integer

NoOfJokers = 2

GameOver = False

...

While NoOfCardsTurnedOver< 52 And Not GameOver

 ...

 Do

 Choice = GetChoiceFromUser()

 Loop Until Choice = "y" Or Choice = "n" Or Choice = "j" And

NoOfJokers > 0

 If Choice = "j" Then

 NoOfJokers = NoOfJokers - 1

 End If

 Call DisplayCard(NextCard)

 NoOfCardsTurnedOver = NoOfCardsTurnedOver + 1

 Higher = IsNextCardHigher(LastCard, NextCard)

 If Higher And Choice = "y" Or Not Higher And Choice = "n" Or

Choice = "j" Then

 DisplayCorrectGuessMessage(NoOfCardsTurnedOver)

...

A equivalent logic for condition (eg NoOfJokers >= 1)

Alternative answer:
Dim Choice As String

Page 45 of 111

Dim NoOfJokers As Integer

NoOfJokers = 0

GameOver = False

...

While NoOfCardsTurnedOver < 52 And Not GameOver

 ...

 Do

 Choice = GetChoiceFromUser()

 Loop Until Choice = "y" Or Choice = "n" Or Choice = "j" And

NoOfJokers <=1

 If Choice = "j" Then

 NoOfJokers = NoOfJokers + 1

 End If

 Call DisplayCard(NextCard)

 NoOfCardsTurnedOver = NoOfCardsTurnedOver + 1

 Higher = IsNextCardHigher(LastCard, NextCard)

 If Higher And Choice = "y" Or Not Higher And Choice = "n" Or

Choice = "j" Then

 DisplayCorrectGuessMessage(NoOfCardsTurnedOver)

...

A equivalent logic for condition (eg NoOfJokers < 2)

Python 2
...

NoOfJokers = 2

GameOver = False

...

while (NoOfCardsTurnedOver < 52) and (not GameOver):

...

 Choice = ''

 while (Choice != 'y') and (Choice != 'n') and ((Choice != 'j')

or (NoOfJokers == 0)):

 Choice = GetChoiceFromUser()

 if Choice == 'j':

 NoOfJokers = NoOfJokers - 1

 DisplayCard(NextCard)

 NoOfCardsTurnedOver = NoOfCardsTurnedOver + 1

 Higher = IsNextCardHigher(LastCard, NextCard)

 if (Higher and Choice == 'y') or (not Higher and Choice ==

'n') or (Choice == 'j'):

...

A Equivalent logic for condition (eg NoOfJokers < 1)

Alternative answer:
...

NoOfJokers = 0

GameOver = False

...

while (NoOfCardsTurnedOver < 52) and (not GameOver):

...

 Choice = ''

 while (Choice != 'y') and (Choice != 'n') and ((Choice != 'j')

or (NoOfJokers == 2)):

 Choice = GetChoiceFromUser()

 if Choice == 'j':

 NoOfJokers = NoOfJokers + 1

 DisplayCard(NextCard)

 NoOfCardsTurnedOver = NoOfCardsTurnedOver + 1

 Higher = IsNextCardHigher(LastCard, NextCard)

 if (Higher and Choice == 'y') or (not Higher and Choice ==

'n') or (Choice == 'j'):

Page 46 of 111

...

A equivalent logic for condition (eg NoOfJokers > 1)

Python 3
...

NoOfJokers = 2

GameOver = False

...

while (NoOfCardsTurnedOver < 52) and (not GameOver):

...

 Choice = ''

 while (Choice != 'y') and (Choice != 'n') and ((Choice != 'j')

or (NoOfJokers == 0)):

 Choice = GetChoiceFromUser()

 if Choice == 'j':

 NoOfJokers = NoOfJokers - 1

 DisplayCard(NextCard)

 NoOfCardsTurnedOver = NoOfCardsTurnedOver + 1

 Higher = IsNextCardHigher(LastCard, NextCard)

 if (Higher and Choice == 'y') or (not Higher and Choice ==

'n') or (Choice == 'j'):

...

A Equivalent logic for condition (eg NoOfJokers < 1)

Alternative answer:
...

NoOfJokers = 0

GameOver = False

...

while (NoOfCardsTurnedOver < 52) and (not GameOver):

...

 Choice = ''

 while (Choice != 'y') and (Choice != 'n') and ((Choice != 'j')

or (NoOfJokers == 2)):

 Choice = GetChoiceFromUser()

 if Choice == 'j':

 NoOfJokers = NoOfJokers + 1

 DisplayCard(NextCard)

 NoOfCardsTurnedOver = NoOfCardsTurnedOver + 1

 Higher = IsNextCardHigher(LastCard, NextCard)

 if (Higher and Choice == 'y') or (not Higher and Choice ==

'n') or (Choice == 'j'):

...

A equivalent logic for condition (eg NoOfJokers > 1)

Java
...

char choice;

int noOfJokers;

...

noOfJokers = 2;

gameOver = false;

...

while (noOfCardsTurnedOver < 52 && !gameOver) {

 getCard(nextCard, deck, noOfCardsTurnedOver);

 do {

 choice = getChoiceFromUser();

 } while (!(choice == 'y' || choice == 'n' || choice == 'j'

&& noOfJokers != 0));

Page 47 of 111

if (choice == 'j') {

 noOfJokers = noOfJokers - 1;

 }

 displayCard(nextCard);

 noOfCardsTurnedOver = noOfCardsTurnedOver + 1;

 higher = isNextCardHigher(lastCard, nextCard);

 if (higher && choice =='y' || !higher && choice=='n' || choice

== 'j') {

...

A equivalent logic for condition (eg NoOfJokers > 0)

Alternative answer:
...

char choice;

int noOfJokers;

...

noOfJokers = 0;

gameOver = false;

...

while (noOfCardsTurnedOver < 52 && !gameOver) {

 getCard(nextCard, deck, noOfCardsTurnedOver);

 do {

 choice = getChoiceFromUser();

 } while (!(choice == 'y' || choice == 'n' || choice == 'j'

&& noOfJokers != 2));

 if (choice == 'j') {

 noOfJokers = noOfJokers + 1;

 }

 displayCard(nextCard);

 noOfCardsTurnedOver = noOfCardsTurnedOver + 1;

 higher = isNextCardHigher(lastCard, nextCard);

 if (higher && choice =='y' || !higher && choice=='n' || choice

== 'j') {

...

A equivalent logic for condition (eg NoOfJokers < 2)
7

(iii) ****SCREEN CAPTURE****
Must match code from (c)(i) and (c)(ii), including prompts on screen
capture matching those in code. Code for (c)(ii) must be sensible.

Mark as follows:
j entered by user results in message Well done! You guessed

correctly.; R if this aspect of test is for a random (shuffled deck)

game

2nd j entered by user results in message Well done! You guessed

correctly.; R if this aspect of test is for a random (shuffled deck)

game

3rd j entered by user results in message Do you think the next card

will be higher than the last card (enter y or n)?; A if test for

3rd joker being played is for a random (shuffled deck) game A message
not being displayed and game ends (only if matches code for (c)(ii)) I
additional error messages being displayed after j entered and before

the message Do you think the next card will be higher than the

last card (enter y or n)? as long as error messages match code for

(c)(ii) R if player’s score is increased when they play a 3rd joker

Page 48 of 111

3

(d) (i) A Any sensibly named identifiers for variables / parameters instead of
those used in this mark scheme

There are 5 marks available for setting up a new subroutine and the
routine interface:
Created a new subroutine named CalculateProbability;

Correct routine interface with parameters of LastCard and Deck of

correct data type;
All data needed by new subroutine is passed to the subroutine via the
routine interface (ie no data values obtained from global variables);
Mechanism to return a numeric value to the calling routine set up; R use
of global variable
Value calculated by subroutine is returned to calling routine;
I Additional parameters

There are then 6 marks available for calculating the probability:

Repetition structure set up to look at each card in Deck that has not yet

been used in the game;
Selection structure, inside repetition structure, that checks if LastCard is

higher than a card in Deck;

Inside the selection structure NoOfCardsHigher incremented if the

condition in the selection structure is for a comparison of two cards; R If
NoOfCardsHigher always incremented

Inside the selection structure NoOfCardsLower incremented R If

NoOfCardsLower is always incremented;

//
Inside the selection structure NoOfCardsHigher incremented if the

condition in the selection structure is for a comparison of two cards; R If
NoOfCardsHigher always incremented

Correct calculation for NoOfCardsInDeck (does not matter if inside or

outside repetition structure);
//
Inside the selection structure NoOfCardsLower incremented if the

condition in the selection structure is for a comparison of two cards; R If
NoOfCardsLower always incremented

Correct calculation for NoOfCardsInDeck (does not matter if inside or

outside repetition structure);

Correctly calculates the number of cards, that have not been used in the
game so far, that are higher / lower than LastCard in Deck;

Dividing NoOfCardsHigher by NoOfCardsInDeck / / Dividing

NoOfCardsHigher by the sum of NoOfCardsHigher and

NoOfCardsLower; A any equivalent calculation A correct expression

using incorrectly calculated values for NoOfCardsHigher /
NoOfCardsLower

Note: alternative methods that calculate the probability correctly should
be referred to team leader.

Pascal
Function CalculateProbability(Deck : TDeck;

NoOfCardsTurnedOver : Integer; LastCard : TCard) : Real;

 Var

Page 49 of 111

 Probability : Real;

 Count : Integer;

 NoOfCardsHigher : Integer;

 NoOfCardsLower : Integer;

 Begin

 NoOfCardsHigher := 0;

 NoOfCardsLower := 0;

 For Count := 1 To (52 – NoOfCardsTurnedOver)

 Do

 If IsNextCardHigher(LastCard, Deck[Count])

 Then NoOfCardsHigher := NoOfCardsHigher + 1

 Else NoOfCardsLower := NoOfCardsLower + 1;

 Probability := NoOfCardsHigher / (NoOfCardsHigher +

NoOfCardsLower);

 CalculateProbability := Probability;

 End;

Alternative answer:
...

For Count := 1 To (52 – NoOfCardsTurnedOver)

 Do

 If IsNextCardHigher(LastCard, Deck[Count])

 Then NoOfCardsHigher := NoOfCardsHigher + 1;

Probability := NoOfCardsHigher / (52 - NoOfCardsTurnedOver);

CalculateProbability := Probability;

...

Alternative answer:
Function CalculateProbability(Deck : TDeck; LastCard : TCard)

: Real;

Var

 Probability :Real;

 Count : Integer;

 NoOfCardsHigher : Integer;

 Begin

 NoOfCardsHigher := 0;

 Count := 1;

 While (Count < 52) And (Deck[Count].Suit <> 0)

 Do

 Begin

 If IsNextCardHigher(LastCard, Deck[Count])

 Then NoOfCardsHigher := NoOfCardsHigher + 1;

 Count := Count + 1;

 End;

 Probability := NoOfCardsHigher / (Count - 1);

 CalculateProbability:= Probability;

 End;

A Deck[Count].Rank instead of Deck[Count].Suit

VB.Net
Function CalculateProbability(ByVal Deck() As TCard, ByVal

NoOfCardsTurnedOver As Integer, ByVal LastCard As TCard) As

Single

 Dim Probability As Single

 Dim Count As Integer

 Dim NoOfCardsHigher As Integer = 0

 Dim NoOfCardsLower As Integer = 0

 For Count = 1 To(52 – NoOfCardsTurnedOver)

 If IsNextCardHigher(LastCard, Deck(Count)) Then

 NoOfCardsHigher = NoOfCardsHigher + 1

 Else

 NoOfCardsLower = NoOfCardsLower + 1

 End If

Page 50 of 111

 Next

 Probability = NoOfCardsHigher / (NoOfCardsHigher +

NoOfCardsLower)

 Return Probability

End Function

Alternative answer:
...

For Count = 1 To (52 – NoOfCardsTurnedOver)

 If IsNextCardHigher(LastCard, Deck(Count)) Then

 NoOfCardsHigher = NoOfCardsHigher + 1

 End If

Next

Probability = NoOfCardsHigher / (52 -NoOfCardsTurnedOver)

CalculateProbability = Probability

...

Alternative answer:
Function CalculateProbability(ByVal Deck() As TCard, ByVal

LastCard As TCard) As Single

 Dim Probability As Single

 Dim Count As Integer

 Dim NoOfCardsHigher As Integer = 0

 Count = 1

 While Count < 52 And Deck(Count).Suit <> 0

 If IsNextCardHigher(LastCard, Deck(Count)) Then

 NoOfCardsHigher = NoOfCardsHigher + 1

 End If

 Count = Count + 1

 End While

 Probability = NoOfCardsHigher / (Count - 1)

 Return Probability

End Function

A Deck(Count).Rank instead of Deck(Count).Suit

Note: return mechanism does not need to be explicitly set up in routine
interface

VB6
Private Function CalculateProbability(ByRef Deck() As TCard,

ByVal NoOfCardsTurnedOver As Integer, ByRef LastCard As TCard)

As Single

 Dim Probability As Single

 Dim Count As Integer

 Dim NoOfCardsHigher As Integer

 Dim NoOfCardsLower As Integer

 NoOfCardsHiger = 0

 NoOfCardsLower = 0

 For Count = 1 To (52 – NoOfCardsTurnedOver)

 If IsNextCardHigher(LastCard, Deck(Count)) Then

 NoOfCardsHigher = NoOfCardsHigher + 1

 Else

 NoOfCardsLower = NoOfCardsLower + 1

 End If

 Next

 Probability = NoOfCardsHigher / (NoOfCardsHigher +

NoOfCardsLower)

 CalculateProbability = Probability

End Function

Alternative answer:
...

For Count = 1 To (52 – NoOfCardsTurnedOver)

Page 51 of 111

 If IsNextCardHigher(LastCard, Deck(Count)) Then

 NoOfCardsHigher = NoOfCardsHigher + 1

 End If

Next

Probability = NoOfCardsHigher / (52 - NoOfCardsTurnedOver)

CalculateProbability = Probability

...

Alternative answer:
Private Function CalculateProbability(ByRef Deck() As TCard,

ByRef LastCard As TCard) As Single

 Dim Probability As Single

 Dim Count As Integer

 Dim NoOfCardsHigher As Integer

 NoOfCardsHigher = 0

 Count = 1

 While Count < 52 And Deck(Count).Suit <> 0

 If IsNextCardHigher(LastCard, Deck(Count)) Then

 NoOfCardsHigher = NoOfCardsHigher + 1

 End If

 Count = Count + 1

 Wend

 Probability = NoOfCardsHigher / (Count - 1)

 CalculateProbability = Probability

End Function

A Deck(Count).Rank instead of Deck(Count).Suit

Python 2
def CalculateProbability(Deck, NoOfCardsTurnedOver,

LastCard):

 NoOfCardsHigher = 0

 NoOfCardsLower = 0

 for Count in range(1, 53 – NoOfCardsTurnedOver):

 if (IsNextCardHigher(LastCard, Deck[Count]):

 NoOfCardsHigher = NoOfCardsHigher + 1

 else:

 NoOfCardsLower = NoOfCardsLower + 1

 Probability = NoOfCardsHigher / (NoOfCardsHigher +

NoOfCardsLower)

 return Probability

Alternative answer:
...

for Count in range(1, 53 – NoOfCardsTurnedOver):

 if (IsNextCardHigher(LastCard, Deck[Count]):

 NoOfCardsHigher = NoOfCardsHigher + 1

Probability = NoOfCardsHigher / (52 – NoOfCardsTurnedOver)

return Probability

...

Alternative answer:
def CalculateProbability(Deck,LastCard):

 NoOfCardsHigher = 0

 Count = 1

 while (Count < 52) and (Deck[Count].Suit != 0):

 if (IsNextCardHigher(LastCard, Deck[Count]):

 NoOfCardsHigher = NoOfCardsHigher + 1

 Count = Count + 1

 Probability = NoOfCardsHigher / (Count - 1)

 return Probability

A Deck[Count].Rank instead of Deck[Count].Suit

Page 52 of 111

Python 3
def CalculateProbability(Deck, NoOfCardsTurnedOver,

LastCard):

 NoOfCardsHigher = 0

 NoOfCardsLower = 0

 for Count in range(1, 53 – NoOfCardsTurnedOver):

 if (IsNextCardHigher(LastCard, Deck[Count]):

 NoOfCardsHigher = NoOfCardsHigher + 1

 else:

 NoOfCardsLower = NoOfCardsLower + 1

 Probability = NoOfCardsHigher / (NoOfCardsHigher +

NoOfCardsLower)

 return Probability

Alternative answer:
...

for Count in range(1, 53 – NoOfCardsTurnedOver):

 if (IsNextCardHigher(LastCard, Deck[Count]):

 NoOfCardsHigher = NoOfCardsHigher + 1

Probability = NoOfCardsHigher / (52 – NoOfCardsTurnedOver)

return Probability

...

Alternative answer:
def CalculateProbability(Deck, LastCard):

 NoOfCardsHigher = 0

 Count = 1

 while (Count < 52) and (Deck[Count].Suit != 0):

 if (IsNextCardHigher(LastCard, Deck[Count]):

 NoOfCardsHigher = NoOfCardsHigher + 1

 Count = Count + 1

 Probability = NoOfCardsHigher / (Count - 1)

 return Probability

A Deck[Count].Rank instead of Deck[Count].Suit

Java
float calculateProbability(TCard[] deck, int

noOfCardsTurnedOver, TCard lastCard) {

 int noOfCardsHigher;

 int noOfCardsLower;

 float probability;

 noOfCardsHigher = 0;

 noOfCardsLower = 0;

 for (int count = 1; count <= 52 - noOfCardsTurnedOver;

count++) {

 if (isNextCardHigher(lastCard, deck[count])) {

 noOfCardsHigher = noOfCardsHigher + 1;

 } else {

 noOfCardsLower = noOfCardsLower + 1;

 }

 }

 probability = (float) noOfCardsHigher / (noOfCardsHigher +

noOfCardsLower);

 return probability;

}

Alternative answer:
float calculateProbability(TCard[] deck, int

noOfCardsTurnedOver, TCard lastCard) {

 int noOfCardsHigher;

 float probability;

 noOfCardsHigher = 0;

 for (int count = 1; count <= 52 - noOfCardsTurnedOver;

Page 53 of 111

count++) {

 if (isNextCardHigher(lastCard, deck[count])) {

 noOfCardsHigher = noOfCardsHigher + 1;

 }

 }

 probability = (float) noOfCardsHigher / (52 -

noOfCardsTurnedOver);

 return probability;

}

Alternative answer:
float calculateProbability(TCard[] deck, int

noOfCardsTurnedOver, TCard lastCard) {

 int noOfCardsHigher;

 float probability;

 int count;

 count = 1;

 noOfCardsHigher = 0;

 while (count < 52 && deck[count].suit != 0) {

 if (isNextCardHigher(lastCard, deck[count])) {

 noOfCardsHigher = noOfCardsHigher + 1;

 }

 count = count + 1;

 }

 probability = (float) noOfCardsHigher / (count - 1);

 return probability;

}

A deck[count].rank instead of deck[count].suit
11

(ii) Call to CalculateProbability subroutine in correct place;

R If parameter list does not match answer to (d)(i)

Displays "The probability of the next card being higher is " in

correct place;
A Minor typos in prompt
I Capitalisation

Displays the calculated probability;
R If probability not returned by CalculateProbability subroutine

A Use of temporary variable to store the value returned by
CalculateProbability with contents of temporary variable then

displayed using output message
A Incorrect probability as long as value displayed is the value returned
by CalculateProbability subroutine

I Case of identifiers and output messages
A Minor typos in output messages
I Spacing in output messages

Pascal
...

Writeln('The probability of the next card being higher is ',

CalculateProbability(Deck, NoOfCardsTurnedOver,

LastCard):3:2);

GetCard(NextCard, Deck, NoOfCardsTurnedOver);

Repeat

 Choice := GetChoiceFromUser;

...

VB.Net

Page 54 of 111

...

 Console.WriteLine("The probability of the next card being

higher is " & CalculateProbability(Deck, NoOfCardsTurnedOver,

LastCard))

 GetCard(NextCard, Deck, NoOfCardsTurnedOver)

 Do

 Choice = GetChoiceFromUser()

 ...

VB6

...

WriteLine("The probability of the next card being higher is "

& CalculateProbability(Deck, NoOfCardsTurnedOver, LastCard))

Call GetCard(NextCard, Deck, NoOfCardsTurnedOver)

Do

 Choice = GetChoiceFromUser()

 ...

Alternative answers could use some of the following instead of
WriteLine:
Console.Text = Console.Text & ...

WriteLineWithMsg

WriteWithMsg

Msgbox

WriteNoLine

Python 2
...

print 'The probability of the next card being higher is %3.2f'

%CalculateProbability(Deck, NoOfCardsTurnedOver, LastCard)

GetCard(NextCard, Deck, NoOfCardsTurnedOver)

Choice = ''

while (Choice != 'y') and (Choice != 'n'):

 Choice = GetChoiceFromUser()

...

Python 3
...

print('The probability of the next card being higher is %3.2f'

%CalculateProbability(Deck, NoOfCardsTurnedOver, LastCard))

GetCard(NextCard, Deck, NoOfCardsTurnedOver)

Choice = ''

while (Choice != 'y') and (Choice != 'n'):

 Choice = GetChoiceFromUser()

...

Java
...

console.print("The probability of the next card being higher

is ");

console.println(calculateProbability(deck,

noOfCardsTurnedOver, lastCard));

getCard(nextCard, deck, noOfCardsTurnedOver);

...

3

(iii) ****SCREEN CAPTURE(S)****
This is conditional on sensible code for (d)(i) and / or (d)(ii)
The probability of the next card being higher is 1;

Page 55 of 111

User enters y followed by The probability of the next card being
higher is 0.9 ;

A probabilities expressed as percentages (100, 90)
A Probabilities expressed as fractions (51 / 51, 45 / 50)
A Probabilities expressed in scientific form (1.00E+00, 0.90E+00)
A 0.9411765 and 0.88 instead of 1 and 0.9 - if (b) not completed /
completed after (d)
A Other values for probabilities that are correct based on incorrect
answer for (b) only if code for (d) is correct
R If test is for a random (shuffled deck) game

R Probability of 0
2

[39]

Q9.
(a)

Algorithm Name Requires Sorted
List? (Tick one box)

Binary search

Linear search

1 mark for having a tick in the "Binary search" row.
A alternative indicators for tick eg "Yes"
A a tick for "Binary search" and a cross for "Linear search"

R answers where two ticks have been used.
1

(b)

 List

List

Length Outer

Pointer

Current

Value

Inner

Pointer

[1]

9

[2]

8

[3]

5

[4]

6

4 2 8 1 9

 0 8

 3 5 2 9

 1 8

 0 5

 4 6 3 9

 2 8

 1 6

Page 56 of 111

Award 1 mark for each of the highlighted rectangles which has the correct
values written in it in the unshaded cells.
Accept responses in which correct values are unnecessarily written out again.
Do not award a mark for any rectangle which has an incorrect value written in
it.

3

(c) The value being moved / CurrentValue / 6 does not need to be put at the start

of the list / / should be inserted at position 2 not position 1;
Because the second condition (in the While statement) is not satisfied;
MAX 1

1

(d)

Order of Time Complexity Tick one box

O(n)

O(n2)

O(2n)

A alternative indicators instead of a tick eg a cross, Y, Yes
R responses in which more than one box is ticked

1

(e) Insertion sort;
A Insert sort

1

(f) (i) 9, 6, 8;
Must be in the order above. Can be separated by any character or a
space

1

(ii) 9, 20,10;
Must be in the order above. Can be separated by any character or a
space.

1

(g)

Page 57 of 111

1 mark for inserting number 4 in the correct place
1 mark for inserting both numbers 3 and 5 in the correct place relative to 4
MAX 1 if any numbers added in the wrong place / any extra numbers added

2

[11]

Q10.
(a) Values / cards need to be taken out of the data structure from the opposite end that

they are put in / / cards removed from top / front and added at end / bottom / rear;
Values / cards need to be removed in the same order that they are added;
A It is First in First Out / / It is FIFO;
A It is Last in Last Out / / It is LILO;
MAX 1

1

(b) (i) FrontPointer = 11

RearPointer = 52

QueueSize = 42

1 mark for all three values correct
1

(ii) FrontPointer = 11

RearPointer = 2

QueueSize = 44

1 mark for all three values correct
A incorrect value for FrontPointer if it matches the value given in part

(i) and incorrect value for QueueSize if it is equal to the value given for

QueueSize in part (i) incremented by two (follow through of errors

previously made)
1

(iii) If DeckQueue is empty then
 Report error

Else

 Output DeckQueue[FrontPointer]

 Decrement QueueSize

 Increment FrontPointer

 If FrontPointer>52 Then

 FrontPointer = 1

Page 58 of 111

EndIf

1 mark for If statement to check if queue is empty – alternative for test is
QueueSize = 0.

1 mark for reporting an error message if the queue is empty / / dealing
with the error in another sensible way – this mark can still be awarded if
there is an error in the logic of the If statement, as long as there is an If
statement with a clear purpose.
1 mark for only completing the rest of the algorithm if the queue is not
empty – this mark can still be awarded if there is an error in the logic of
the If statement, as long as there is an If statement with a clear purpose.

1 mark for outputting the card at the correct position
1 mark for incrementing FrontPointer and decrementing QueueSize
1 mark for If statement testing if the end of the queue has been reached
1 mark for setting FrontPointer back to 1 if this is the case – this mark
can still be awarded if minor error in logic of If statement, eg >= instead
of =
A FrontPointer = (FrontPointer MOD 52) + 1 for 3 marks or

FrontPointer = (FrontPointer MOD 52) for 2 marks, both as alternatives
to incrementing and using and the second If statement - deduct 1 mark
from either of the above if

QueueSize has not been decremented
A any type of brackets for array indexing
I Additional reasonable EndIf Statements
MAX 5 unless all of the steps listed above are carried out

6

(c) Flow of program / execution sequence determined by events / / program
executes relevant code-handling block / procedure / sub-routine in response to
events;
Example of event such as clicking a button;
Message sent to program when event occurs;
System / message loop executes until application closes; this receives and

processes messages / / use of event-listener / handler;
If several events occur they are queued;
MAX 2

2

(d) The smartphone operating system:

• Will not have to support as wide a range of hardware devices /
peripherals / / may not support external storage devices;

• Will not / less likely to need to support the addition of new hardware
devices to the system;

• Will have minimising power consumption as a higher priority; A will have

more sophisticated power management features
• Will run application software in a sandbox / / will (more tightly) restrict

access to resources by application software;
• Must be capable of running on a device with less processing power / /

less RAM / memory / / smaller memory footprint;
• Needs to work with specialised hardware devices eg GPS receiver,

accelerometer (Note: A relevant example must be given);

A Points made in reverse, but do not give 2 marks for one point and its
reverse.
MAX 2

2

[13]

Page 59 of 111

Q11.
(a) +;

4, 9, 6; (in any order)
2

(b) A Store the data / value (in the vertices / nodes);
A: holds the expression
B: Left pointer // points to the left child / left sub tree;
C: Right pointer // points to the right child / right sub tree;
A “indicates”, "index" or other synonym for “points” / “pointer”
R Stores left / right subtree

3

(c) The node has no left child / sub tree;
A there is nothing to the left
A this is a null pointer

1

(d) One mark for each area outlined with a dark rectangle. Lines that are not
outlined can be missed out.

 Alternative 1Alternative 2

Mark against whichever alternative gives the highest mark.

Stop marking as soon as incorrect output is given.
4

(e) Post-order;
A Depth-first
A Depth-first search as BOD
TO Depth-first pre / in-order

1

(f) (4 + 9 * 6 in) Reverse Polish (Notation) // Postfix (Notation) // RPN;
1

Page 60 of 111

[12]

Q12.
(a) Static structures have fixed (maximum) size whereas size of dynamic structures can

change // Size of static structure fixed at compile-time whereas size of dynamic
structure can change at run-time;
Static structures can waste storage space / memory if the number of data items
stored is small relative to the size of the structure whereas dynamic structures only

take up the amount of storage space required for the actual data;
Dynamic data structures (typically) require memory to store pointer(s) to the next
item(s) which static structures (typically) do not need // Static structures (typically)
store data in consecutive memory locations, which dynamic data structures
(typically) do not;
Max 2
A just one side of points, other side is by implication
NE Dynamic data structures use pointers

2

(b) Not possible to simply insert item into middle of list;

Must move all items that should come after the new process down in the array;
NE move all data
Moving items is time consuming;
In a dynamic implementation, insertion achieved by adjusting pointers;
Max 2

2

(c) Priority (queue);
1

(d) (i) Memory allocated / deallocated at run-time / for new items (to dynamic

data structure);
(Provides a) pool of free / unused / available memory;
NE to store new items
Max 1

1

(ii) (Memory) address // memory location // position in memory;
NE position or location without reference to memory
R index

1

(iii) OVERALL GUIDANCE:

Solutions should be marked on this basis:

• Up to 4 marks for correctly locating the position to insert the new
process at.

• Up to 4 marks for creating a new node and storing the correct data
into it and the associated pointers.
Some marks can be awarded for this even if the locating process
is incorrect / missing.

The full 7 marks should only be awarded for a complete fully working
solution. If any steps are missed out, then award a Maximum of six
marks (Max 6).

Page 61 of 111

The addition of any unnecessary steps that do not stop the algorithm
working should not result in a reduction in marks.

Responses should be accepted in pseudo-code or structured English.
If you are unsure about the correctness of a solution please refer it
to a team leader. Also, responses in prose should be referred to
team leaders.

SPECIFIC MARKING POINTS

Correctly locating insertion point (Max 4):

1 Initialising current node pointer to start pointer;

2 Use of loop to attempt to move through list (regardless of correct
terminating condition);

3 Advancing current node pointer within loop;
4 Correctly maintaining a pointer to the node before the position that

the new node should be inserted at;
5 Sensible condition to identify place to insert (suitable terminating

condition for loop or condition in selection statement);

Correctly inserting new process (Max 4):

6 Create a new node / obtain new node from heap;
7 Store new process name and priority (in new node);
8 Update NextNodePointer of node before newly inserted one to

point to new node;

9 Set NextNodePointer of new node to point to node after it;

Mark point 2 can only be awarded if, within the loop, current node
pointer is being changed (even if not correctly changed).

Mark point 4 can only be awarded if mark point 3 had been awarded.

Mark point 5 can be awarded if there is a sensible condition, even if
current node pointer is not correctly updated.

Mark points 8 and 9 can only be awarded if the correct insertion point
has been found.

For any solution:

A use of either while or repeat loops, as long as logic is correct.
A storage of values into new node in any order, and regardless of
whether the node has been created or not.

A use of ^ symbol to indicate the value stored at an address referenced
by a pointer, for example CurrentNodePointer .̂ Priority indicates the
value stored in the Priority field of the node pointed to by the pointer
CurrentNodePointer.
A use of alternative variable names so long as the meaning is clear.

EXAMPLE SOLUTIONS AND MARKS:

These four examples show where marks should be awarded in some
possible solutions (subject to a maximum mark of 7):

Example 1:

Page 62 of 111

CurrentNodePointer = StartPointer;

Repeat

 PreviousNodePointer =

 CurrentNodePointer;

 CurrentNodePointer =

 NextNodePointer of current node;

Until priority of process in current node < priority

of process to add

//

 priority = "Low";;

Create new node;

Store new process name (and priority)

 in new node;

New node’s NextNodePointer = Next

 NodePointer of item at position

 PreviousNodePointer;

NextNodePointer of item at position

 PreviousNodePointer = Address of new

 node;

Example 2:

This is an alternative way of expressing Example 1:
1 Load the Start Pointer value into the Current Node Pointer;

2 Copy value from Current Node Pointer into Previous Node
Pointer;

3 Set Current Node Pointer to Next Node Pointer of current node;
4 If the priority of the data item at the current node is higher than or

the same as the priority of the process to be added; then go back
to step 2;

5 Create a new node;
6 Store the name of the new process (and its priority) in the new

node;
7 Copy value from Next Node Pointer of list entry at position stored

in Previous Node Pointer into the Next Node Pointer of the new
node;

8 Set the Next Node Pointer of the list entry at position stored in the
Previous Node Pointer to point to the new node;

Example 3:

CurrentNodePointer = StartPointer;

Inserted = False

While; Inserted = False Do

 If Current Node’s priority < new item

 priority // = "Low"; Then

 Create new node;

 Store new process name (and priority)

 in new node;

 New node’s NextNodePointer =

 CurrentNodePointer;

 NextNodePointer of item at position

 PreviousNodePointer = Address of new

 node;

 Inserted=True

Page 63 of 111

 End If

 PreviousNodePointer = CurrentNodePointer;

 CurrentNodePointer =

 NextNodePointer of current node;

End While

Example 4:

CurrentNodePointer = StartPointer;

While; not at end of list // While

 CurrentNodePointer <> Nil // While

 priority of process at CurrentNodePointer

 >= priority of process to add Do

 If Current Node’s priority is the required

 priority // = "Normal"; Then

 LastNodeOfCurrentPriorityPointer =

 CurrentNodePointer;

 End If

 CurrentNodePointer =

 NextNodePointer of current node;

End While

Create new node;

Store new process name (and priority)

 in new node;

New node ’s NextNodePointer = Next

 NodePointer of item at position

 LastNodeOfCurrentPriorityPointer;

NextNodePointer of item at position

 LastNodeOfCurrentPriorityPointer = Address

 of new node;
7

[14]

Q13.
(a) Correct variable declarations for Bit, Answer and Column;

I additional variable declarations
Column initialised correctly before the start of the loop;

Answer initialised correctly before the start of the loop;

While/Repeat loop, with syntax allowed by the programming language used,

after the variable initialisations; and correct condition for the termination of the
loop;
R For loop

A any While/Repeat loop with logic corresponding to that in flowchart

(for a loop with a condition at the start accept >=1 or >0 but reject <>0)
Correct prompt "Enter bit value:" ;

followed by Bit assigned value entered by user;

followed by Answer given new value;

R if incorrect value would be calculated [followed by value of Column divided

by 2;
A multiplying by 0.5
Correct prompt and the assignment statements altering Bit, Answer and

Column are all within the loop;

After the loop – output message followed by value of Answer;

Page 64 of 111

I Case of variable names, player names and output messages
A Minor typos in variable names and output messages
I spacing in prompts
A answers where formatting of decimal values is included e.g.
Writeln(‘Decimal value is: ’, Answer : 3)

A initialisation of variables at declaration stage

A no brackets around column * bit

Pascal
Program Question;

 Var

 Answer : Integer;

 Column : Integer;

 Bit : Integer;

 Begin

Answer := 0;

Column := 8;

Repeat

Writeln('Enter bit value: ');

Readln(Bit);

Answer := Answer + (Column * Bit);

Column := Column DIV 2;

Until Column < 1;

Writeln('Decimal value is: ', Answer);

Readln;

 End.

VB.NET
Sub Main()

Dim Answer As Integer

Dim Column As Integer

Dim Bit As Integer

Answer = 0

Column = 8

Do

Console.Write("Enter bit value: ")

Bit = Console.ReadLine

Answer = Answer + (Column * Bit)

Column = Column / 2

Loop Until Column < 1

Console.Write("Decimal value is: " & Answer)

Console.ReadLine()

End Sub

Alternative Answer
Column = Column \ 2

VB6
Private Sub Form_Load()

Dim Answer As Integer

Dim Column As Integer

Dim Bit As Integer

Answer = 0

Column = 8

Do

Bit = InputBox("Enter bit value: ")

Answer = Answer + (Column * Bit)

Column = Column / 2

Loop Until Column < 1

MsgBox ("Decimal value is: " & Answer)

End Sub

Page 65 of 111

Alternative Answer
Column = Column \ 2

Java
public class Question {

AQAConsole console=new AQAConsole();

public Question(){

int column;

int answer;

int bit;

answer=0;

column=8;

do{

console.print("Enter bit value: ");

bit=console.readInteger("");

answer=answer+(column*bit);

column=column/2;

}while(column>=1);

console.print("Decimal value is: ");

console.println(answer);

 }

 public static void main(String[] arrays){

 new Question();

 }

}

Python 2.6
Answer = 0

Bit = 0

Column = 8

while Column >= 1:

print "Enter bit value: "

Accept: Bit = int(raw_input("Enter bit value: "))

Bit = input()

Answer = Answer + (Column * Bit)

Column = Column // 2

print "Decimal value is: ", Answer

or + str(Answer)

Python 3.1
Answer = 0

Bit = 0

Column = 8

while Column >= 1:

print("Enter bit value: ")

Accept: Bit = int(input("Enter bit value: "))

Bit = int(input())

Answer = Answer + (Column * Bit)

Column = Column // 2

print("Decimal value is: " + str(Answer))

or print("Decimal value is: {0}".format(Answer))

A. Answer and Bit not declared at start as long as they are spelt correctly and
when they are given an initial value that value is of the correct data type

11

(b) ****SCREEN CAPTURE****
Must match code from 16, including prompts on screen capture matching
those in code

Mark as follows:
"Enter bit value:" + first user input of 1

Page 66 of 111

‘Enter bit value: ’ + second user input of 1
‘Enter bit value: ’ + third user input of 0
‘Enter bit value: ’ + fourth user input of 1
Value of 13 outputted;

3

(c) 15;
1

(d) 16 // twice as many // double;
1

(e) Design;
A Planning

1

(f) Implementation;
1

[18]

Q14.
(a) ResetCavern; (all languages)

// GetNewRandomPosition (Pascal only)

// WriteWithMsg (VB6 only)

// WriteLineWithMsg (VB6 only)

// WriteLine (VB6 only)

// WriteNoLine (VB6 only)

// ReadLine (VB6 only);

// SetUpTrapPostions (Python / Java only);

R if any additional code (including routine interface)
R if spelt incorrectly
I case

1

(b) DisplayMenu // DisplayMoveOptions // DisplayWonGameMessage //

DisplayTrapMessage // DisplayLostGameMessage // WriteWithMsg (VB6

only) // WriteLineWithMsg (VB6 only) // WriteLine (VB6 only) //

WriteNoLine(VB6 only);

A DisplayCavern;

R if any additional code (including routine interface)
R if spelt incorrectly
I case

1

(c) Count1 // Count2 // Count;

R if any additional code
R if spelt incorrectly
I case

1

(d) Cavern // TrapPositions;

R if any additional code (including routine interface)
R if spelt incorrectly
A LoadedGameData.TrapPositions

A CurrentGameData.TrapPositions

I case
1

(e) When the value of the cell in the Cavern array // When the value of the cell to

Page 67 of 111

place the item in;
Indicated by the Position variable;

Contains a space // does not contain another item;
R is empty

Max 2 if no variable names used in description
3

(f) The number of times to repeat is known;
A fixed

1

(g) Makes the program code easier to understand;
Makes it easier to update the program;
Makes it easier to change the number of traps (in the game);

Max 1

(h) In text files all data is stored as strings / ASCII values / lines/characters // Text
files use only byte values that display sensibly on a VDU // stores only values
that can be opened and read in a text editor;

Binary files store data using different data types; A by example A Binary files
can only be correctly interpreted by application that created them

2

(i) Easier reuse of routines in other programs;
Routine can be included in a library;
Helps to make the program code more understandable;
Ensures that the routine is self-contained // routine is independent of the rest
of the program;

(Global variables use memory while a program is running) but local variables
use memory for only part of the time a program is running;
reduces possibility of undesirable side effects;
Using global variables makes a program harder to debug;

Max 2

(j) (If it was not then) MonsterAwake is set to the Boolean value returned by the

second call to CheckIfSameCell;

this would overwrite any True value returned by the first call to
CheckIfSameCell;

//
Otherwise the monster would never wake up when the player triggers the first
trap;;
//
Otherwise the monster would only wake up when the player triggers the
second trap;;

2

[15]

Q15.

(a) VB.Net/VB6
Const MaxSize = 4

I capitalisation

Pascal
Const MaxSize = 4

I missing semicolon, capitalisation

Page 68 of 111

NE MaxSize
A MaxSize = 4

Java
final int MAX_SIZE = 4;

I missing semicolon, capitalisation
NE MAX_SIZE

Python 2.6 and 3
MAX_SIZE = 4

1

(b) Improves readability of code // Easier to update the programming code if the

value changes (A by implication) // reduce the likelihood of errors;
1

(c) PlayerOneName // PlayerTwoName;

R if any additional code
R if spelt incorrectly
I case & spaces
A Max_SIZE (Python only)

A Currentfile (R for VB6/VB.Net)
1

(d) LowestCurrentTopScore ;
A PositionOfLowestCurrentTopScore;

R if any additional code
R if spelt incorrectly
I case & spaces

1

(e) b;
1

(f) True;
1

(g) False;
1

(h) UpdateTopScores;

R if spelt incorrectly
I case & spaces

1

(i) VirtualDiceGame;

R if spelt incorrectly
I case & spaces

1

(j) AppealDieResult;
RollAppealDie;

R if spelt incorrectly
R RollAppealDie (Python only)
I case & spaces

1

(k) Until PlayerOut // Until PlayerOut = True // until player is out;
A any unambiguous description of the loop termination condition

1

(l) Because the scope; of the two variables is different; //
Because they are both local variables; in different subroutines;
A Because where they are accessible is different;

2

Page 69 of 111

(m) 3;
1

(n) It compares the score of the current record/position (in the TopScores array);

with the lowest score found so far // with LowestCurrentTopScore;
if it is less than it then it changes the lowest score found so far; R swaps

and makes the position of the lowest top score equal to count / equal to the
current position in the array;

4

[18]

Q16.
(a)

Reverse Polish Notation Equivalent Infix Expression

45 6 + 45 + 6
R 6 + 45

12 19 + 8 * (12 + 19) * 8
R 12+19*8, (19+12)*8
A x for *

2

(b) Simpler for a machine / computer to evaluate // simpler to code algorithm
A easier R to understand
Do not need brackets (to show correct order of evaluation/calculation);
Operators appear in the order required for computation;
No need for order of precedence of operators;
No need to backtrack when evaluating;
A RPN expressions cannot be ambiguous as BOD

1

(c)

Page 70 of 111

Output : 50

1 mark for each of rows 1–3
1 mark for rows 4 and 5 together
1 mark for rows 6 and 7 together
1 mark for correct final output
Values of Op1 and Op2 MUST be assigned in rows 3, 6 and 7 to award the
marks for these rows. They cannot be inferred from incorrectly entered
previous values.

I values in empty cells, even if they are incorrect.
6

(d) If StackArray is full
 Then Stack Full Error

 Else

 Increment TopOfStackPointer

 StackArray [TopOfStackPointer]

 ANumber

EndIf

1 mark for appropriate If structure including condition (does not need both

Then and Else) – Do not award this mark if ANumber is put into StackArray

outside the If.
1 mark for reporting error in correct place

1 mark* for incrementing TopOfStackPointer

1 mark* for storing value in ANumber into correct position in array
* = if the store instruction is given before the increment instruction OR

Page 71 of 111

the If structure then award Max 1 of these two marks UNLESS the item is

inserted at position TopOfStackPointer+1 so the code would work.

I initialisation of TopOfStackPointer to 0

A TopOfStackPointer=20/>=20 for Stack is full

A Logic of if structure reversed i.e. If stack is not full /

TopOfStackPointer<20 / <>20/!=20 and Then, Else swapped

A Any type of brackets or reasonable notation for the array index
DPT If candidate has used a different name any variable then do not award
first mark but award subsequent marks as if correct name used.
Refer answers where candidate has used a loop to find position to insert item
into stack to team leaders.

4

[13]

Q17.
(a) An abstraction / leaving out non-essential details // A mathematical

representation of reality;
1

(b) 1 mark for naming or describing two pointers from this list:

• Front/start/head pointer

• Next node pointer
• Previous node pointer
• Rear/end/tail pointer

R Next free space pointer

1 mark for stating the purpose of one of the pointers that have been named:

• (Front/start/head pointer) to indicate where to remove items from // who
should be served next // who is currently being served;
NE to points to start of list

• (Next node pointer) to link items in list together // to show order of list //
so items can be inserted into middle of list // to traverse list;

• (Previous node pointer) to link items in list together // to show order of
list // so items can be inserted into middle of list // to traverse list

backwards;
• (Read / end / tail pointer) to indicate where to add new items to // so new

people can be added to queue
NE to point to end of list
A Contextualised answers which refer to queue instead of list or adding
people to a queue.
R Answers which clearly relate to the use of a fixed-size array.

2

(ii) Priority (queue);
1

(c) Allow any reasonable example that would require randomness e.g. time next
person joins queue, inter-person arrival time, time to be served, choice of
meal, type (student / teacher) of next person to arrive;
R number of students / teachers / people in queue

1

[5]

Page 72 of 111

Q18.
(a) (i) VB.NET / VB6

 If YCoordinate < 1 Or YCoordinate > 3 Then ValidMove = False

 If ValidMove = True then

 If Board(XCoordinate, YCoordinate) <> " " Then ValidMove

= False

 End If

A If Board(XCoordinate, YCoordinate) = "X" Or
Board(XCoordinate, YCoordinate) = "O" Then

A If Not(Board(XCoordinate, YCoordinate) = " ") Then

A If ValidMove = True AndAlso Board(XCoordinate,

YCoordinate) <> " " Then ValidMove = False (VB.NET only)

Pascal
If (YCoordinate < 1) Or (YCoordinate > 3) Then

ValidMove:=False;

If ValidMove = True Then

 If Board[XCoordinate, YCoordinate] <> ' ' Then

ValidMove:=False;

Java
boolean checkValidMove(int xCoordinate, int yCoordinate,

char[][] board) {

 boolean validMove = true;

 //check the x Coordinate is valid

 if (xCoordinate < 1 || xCoordinate > 3) validMove = false;

 //check the y Coordinate is valid

 if (yCoordinate < 1 || yCoordinate > 3) validMove = false;

 //check the cell is empty

 if (validMove) {

 if (board[xCoordinate][yCoordinate] != ' ')

validMove = false;

 } // end if

 return validMove;

} // end method checkValidMove

Python
def CheckValidMove(XCoordinate, YCoordinate,Board):

ValidMove = True

Check x coordinate is valid

if (XCoordinate <1) or (XCoordinate > 3):

 ValidMove = False

 if (YCoordinate <1) or (YCoordinate > 3):

 ValidMove = False

 if (ValidMove == True):

 if (Board[XCoordinate][YCoordinate] != ' '):

 ValidMove = False

 return ValidMove

Mark as follows:
IF statement with condition YCoordinate<1, correct logic and second
condition of YCoordinate>3;

Return a value of false if y coordinate is an illegal value; R if value would
not actually be returned;
IF statement checking that move is valid so far;
IF statement comparing value of Board(XCoordinate, YCoordinate) with
" ";
returning a value of false if cell is not empty; R if value would not actually
be returned;
A Equivalent logic

Page 73 of 111

A Alternative answers where Return statements are used after each
validation check instead of assigning a Boolean value to ValidMove

Alternative Answer (Java, Python, VB.NET)
Using only one IF statement and short-circuit evaluation operators, one
mark
for each correct condition plus one mark for correct Boolean operators -
as
long as the check that the Board cell is empty is the last condition (if
Board

cell is not the last condition marks can only be awarded for any correct
conditions that appear before it). Operators for short-circuit evaluation:
VB.NET AndAlso/OrElse instead of And/Or; Python and/or instead of &/|;
Java &&/|| instead of &/|

Alternative Answer (Pascal)
Using only one IF statement with all conditions connected by OR
operators
and the check for non-empty cell being the last condition. If non-empty
cell
test is not the last condition maximum of 4 marks.

Alternative Answer
VB.NET / VB6
If XCoordinate < 1 Or XCoordinate >3 then

 ValidMove = False

 Else

 If YCoordinate < 1 Or YCoordinate > 3

 Then ValidMove = False

 Else

 If Board(XCoordinate, YCoordinate) <> " " Then

ValidMove = False

 End If

 End If

Pascal
If (XCoordinate < 1) Or (XCoordinate > 3)

 Then

 Begin

 ValidMove := False;

 End

 Else

 Begin

 If (YCoordinate < 1) Or (YCoordinate > 3)

 Then

 Begin

 ValidMove := False;

 End

 Else

 Begin

 If Board[XCoordinate, YCoordinate] <> ' '

Then ValidMove := False;

 End

 End;

Mark as follows:
IF statement with condition YCoordinate<1, correct logic and second
condition of YCoordinate>3;

Return a value of false if y coordinate is an illegal value; R if value would
not actually be returned;

Page 74 of 111

Correct use of nested ifs so that checking cell is empty on board only
occurs if xcoordinate and ycoordinate are in the allowed range;
IF statement comparing value of Board(XCoordinate, YCoordinate) with
" ";
returning a value of false if cell is not empty; R if value would not actually
be returned
A Equivalent logic
A Alternative answers where Return statements are used after each
validation check instead of assigning a value to ValidMove

5

(ii) ****SCREEN CAPTURE(S)****
This is conditional on sensible code for (a)(i)

Mark as follows:
Test showing coordinate (2,-3) and error message;
Test showing coordinate (2, 7) and error message;

R other coordinates
A In VB6 a test showing only Y value of the coordinate i.e. -3, 7 and
error message.

2

(iii) ****SCREEN CAPTURE****
This is conditional on sensible code for (a)(i). Mark should not be
awarded if code would not work.
E.g. if Boolean values are assigned to ValidMove and there is no Return
statement after the validation check.
E.g. trying to reference a position in the array that is out of bounds and
would result in an error

Mark as follows:
Screen capture showing board position, coordinates of illegal move and
error message;

1

(b) (i) VB.NET/VB6
If Board(2, 2) = Board(3, 3) And Board(2, 2) =

Board(1, 1) And Board(2, 2) <> " " Then xOrOHasWon = True

 If Board(2, 2) = Board(3, 1) And Board(2, 2) =

Board(1, 3) And Board(2, 2) <> " " Then xOrOHasWon = True

Alternative answer
((Board(2,2)= "X") OR (Board(2,2) ="O"))

instead of <> " "

Alternative answer
 If Board(2, 2) = Board(3, 3) Then

 If Board(2, 2) = Board(1, 1) Then

 If Board(2, 2) <> " " Then

 xOrOHasWon = True

 End If

 End If

 End If

 If Board(2, 2) = Board(3, 1) Then

 If Board(2, 2) = Board(1, 3) Then

 If Board(2, 2) <> " " Then

 xOrOHasWon = True

 End If

 End If

Page 75 of 111

 End If

Pascal
If (Board[2, 2] = Board[3, 3]) And (Board[2, 2] =

Board[1, 1]) And (Board[2, 2] <> ' ') Then xOrOHasWon :=

True;

If (Board[2, 2] = Board[3, 1]) And (Board[2, 2] =

Board[1, 3]) And (Board[2, 2] <> ' ') Then xOrOHasWon :=

True;

Alternative answer
((Board[2,2]= 'X') OR (Board[2,2] ='O'))

instead of <> ' '

Alternative answer
If (Board[2, 2] = Board[3, 3]) Then

 If (Board[2, 2] = Board[1, 1]) Then

 If (Board[2, 2] <> ' ') Then

 xOrOHasWon := True;

If (Board[2, 2] = Board[3, 1]) Then

 If (Board[2, 2] = Board[1, 3]) Then

 If (Board[2, 2] <> ' ') Then

 xOrOHasWon := True;

Java
if (board[1][1] == board[2][2] &&

board[2][2] == board[3][3] &&

board[1][1] != ' ') {

 xOrOHasWon = true;

} // end if diagonal

if (board[3][1] == board[2][2] &&

board[2][2] == board[1][3] &&

board[3][1] != ' ') {

 xOrOHasWon = true;

} // end if other diagonal

return xOrOHasWon;

Python
check diagonals

if (Board[2][2] == Board[3][3]) and (Board[2][2] ==

Board[1][1]) and (Board[2][2] != ' '):

 xOrOHasWon = True # accept return True

if (Board[2][2] == Board[3][1]) and (Board[2][2] ==

Board[1][3]) and (Board[2][2] != ' '):

 xOorOHasWon = True # accept return True

Mark as follows:
Comparison of two cells on one diagonal;
Comparison of other cell on the diagonal with one of the two cells just
checked;
Check that the line is of Xs or Os (not blanks);
Return True if line of three symbols found on the 1st diagonal;

R if value would not actually be returned
All correct conditions for 2nd diagonal;
Return True if line of three symbols found on the 2nd diagonal;
R if value would not actually be returned
I. additional comparisons of cells – as long as they do not result in check
for three symbols in a line not working
Max 4 if diagonal check is inside a loop.

6

Page 76 of 111

(ii) ****SCREEN CAPTURE****
This is conditional on sensible code for (b)(i)

Mark as follows:
Screen capture showing winning message and three symbols in a line in
positions [1,1], [2,2], [3,3] // Screen capture showing winning message
and three symbols in a line in positions [1,3], [2,2], [3,1];

1

(iii) ***SCREEN CAPTURE***
This is conditional on sensible code for (b)(i)

Mark as follows:
Screen capture showing winning message and three symbols in a line in
positions [1,1], [2,2], [3,3] // Screen capture showing winning message
and three symbols in a line in positions [1,3], [2,2], [3,1];
R Same diagonal line as shown in part (i)

1

(c) (i) VB.NET
Else

Console.WriteLine("A draw this time! ")

PlayerOneScore = PlayerOneScore + 0.5

PlayerTwoScore = PlayerTwoScore + 0.5

Endif

VB6
Else

MsgBox ("A draw this time!")

PlayerOneScore = PlayerOneScore + 0.5

PlayerTwoScore = PlayerTwoScore + 0.5

End If

Pascal
Else

 Begin

Writeln('A draw this time!');

PlayerOneScore := PlayerOneScore + 0.5;

PlayerTwoScore := PlayerTwoScore + 0.5;

 End;

Java
} else {

console.println("A draw this time!");

playerOneScore = playerOneScore + 0.5f;

playerTwoScore = playerTwoScore + 0.5f;

} // end if/else

Python 2
 else:

print "A draw this time!"

PlayerOneScore += 0.5 # accept

PlayerOneScore = PlayerOneScore + 0.5

 PlayerTwoScore += 0.5

Python 3
 else:

print("A draw this time!")

PlayerOneScore += 0.5 # accept

PlayerOneScore = PlayerOneScore + 0.5

 PlayerTwoScore += 0.5

Page 77 of 111

Mark as follows:
At least one player’s score changed within the existing IF statement;
A if in THEN part of NoOfMoves=9 statement
Both scores increased by correct amount;

2

(ii) ****SCREEN CAPTURE****

This is conditional on sensible answer for (c)(i).

Drawn board position with 9 symbols (as defined in preliminary material);
Messages saying players have score of 0.5; R other scores

2

(d) (i) VB.NET
Dim Board(4, 4) As Char

VB6
Dim Board(1 to 4, 1 to 4) As String

Pascal
TBoard = Array[1..4,1..4] Of Char;

Java
char board[][] = new char[5][5];

Python
Board = [[0,0,0,0,0],

[0,0,0,0,0],

[0,0,0,0,0],

[0,0,0,0,0],

[0,0,0,0,0],

]

Mark as follows:
Existing declaration of Board modified correctly;
A No change made as position 0 of array will be used (not Pascal / VB6)
–

only accept if explanation is given.
A 0..3 instead of 1..4 (Pascal)
A 0 to 3 instead of 1 to 4 (VB6)

1

(ii) VB.NET / VB6 / Pascal
If NoOfMoves = 16

Java
if (noOfMoves == 16) {

 gameHasBeenDrawn = true;

}

Python
if NoOfMoves == 16:

Mark as follows: Value of 9 changed to 16;
1

(iii) VB.NET / VB6
For Row = 1 To 4

 For Column = 1 To 4

Page 78 of 111

Pascal
For Row := 1 To 4

 Do

 Begin

 For Column := 1 To 4

Java
for (row = 1; row <= 4; row++) {

 for (column = 1; column <= 4; column++) {

Python
def ClearBoard(Board):

 for Row in range(1,5):

 for Column in range(1,5):

 Board[Column][Row] = ' '

A range(4) if candidate has used 0 for array position instead of 4.

Mark as follows:
Outer FOR loop changed to iterate 4 times and
Inner FOR loop changed to iterate 4 times;

A 0 to 3 instead of 1 to 4 – only if indicated 0 th position would be used in
answer to (d)(i).

1

(iv) VB.NET
Console.WriteLine(" | 1 2 3 4 ")

Console.WriteLine("--+-------- ")

For Row = 1 To 4

Console.Write(Row & " | ")

For Column = 1 To 4

VB6
BoardAsString = " | 1 2 3 4 "

 BoardAsString = BoardAsString & vbCrLf & "--+-------" &

vbCrLf

 For Row = 1 To 4

BoardAsString = BoardAsString & Row & " | "

For Column = 1 To 4

Pascal
Writeln(' | 1 2 3 4 ');

Writeln('--+---------');

For Row := 1 To 4

 Do

 Begin

 Write(Row, ' | ');

 For Column := 1 To 4

 Do

 Begin

Java
console.println(" | 1 2 3 4 ");

console.println("--+---------");

for (row = 1; row <= 4; row++) {

console.write(" | ");

for (column = 1; column <= 4; column++) {

Python 2
def DisplayBoard(Board):

print ' | 1 2 3 4 '

print '--+---------'

Page 79 of 111

for Row in range(1,5):

print str(Row) + '| ',

for Column in range(1,5):

 print Board[Column][Row]

 print

 print '\n'

Python 3
def DisplayBoard(Board):

print(' | 1 2 3 4 ')

print('--+---------')

for Row in range(1,5):

print(Row, '|', end=' ')

for Column in range(1,5):

 print(Board[Column][Row],end=" ")

 print()

 print('\n')

A range(4) if candidate has used 0 for array position instead of 4.

Mark as follows:
Change message so that 4th column heading is shown;
Outer FOR loop changed to iterate 4 times and
Inner FOR loop changed to iterate 4 times;

A 0 to 3 instead of 1 to 4 – only if indicated 0th position would be used

in answer to (d)(i).
2

(v) ****SCREEN CAPTURE****
This is conditional on sensible answers for (d)(i) and (iv)

displays 4 rows;
displays 4 columns;

2

(vi) VB.NET / VB6
If XCoordinate < 1 Or XCoordinate > 4 Then ValidMove =

False

If YCoordinate < 1 Or YCoordinate > 4 Then ValidMove =

False

Pascal
If (XCoordinate < 1) Or (XCoordinate > 4) Then ValidMove

:= False;

If (YCoordinate < 1) Or (YCoordinate > 4) Then ValidMove

:= False;

Java
if (xCoordinate < 1 || xCoordinate > 4) validMove = false;

//check the y Coordinate is valid

if (yCoordinate < 1 || yCoordinate > 4) validMove = false;

//check the cell is empty

Python
def CheckValidMove(XCoordinate, YCoordinate, Board):

ValidMove = True

if (XCoordinate <1) or (XCoordinate > 4):

 ValidMove = False

 if (YCoordinate <1) or (YCoordinate > 4):

 ValidMove = False

 if (ValidMove == True) and

Page 80 of 111

(Board[XCoordinate][YCoordinate] != ' '):

 ValidMove = False

 return ValidMove

Mark as follows:

Change upper boundary to 4 for both X and Y coordinates;

A Change lower boundary to 0 for both X and Y coordinates instead of
upper boundary change – only if indicated 0th position would be used in
answer to (d)(i);

1

(vii) VB.NET / VB6
For Row = 1 To 4

 If Board(2, Row) = Board(3, Row) And (Board(2, Row) =

Board(1, Row) Or Board(2, Row) = Board(4, Row)) and Board(2,

Row) <> " " Then xOrOHasWon = True

Next

Pascal
For Row := 1 To 4

 Do

 If (Board[2, Row] = Board[3, Row]) And ((Board[2,

Row] = Board[1, Row]) Or (Board[2, Row] = Board[4, Row]))

And (Board[2, Row] <> ' ')

 Then xOrOHasWon := True;

Java
for (row = 1; row <= 4; row++) {

 if (board[1][row] == board[2][row] &&

board[2][row] == board[3][row] &&

board[2][row] != ' ') {

xOrOHasWon = true;

 } // end if

 if (board[2][row] == board[3][row] &&

board[3][row] == board[4][row] &&

board[row][2] != ' ') {

xOrOHasWon = true;

 } // end if

} // end column

Python
if (Board[2][Row] == Board[3][Row]) and (Board[2][Row]

= = Board[1][Row]) or (Board[2][Row] = = Board[4][Row])

and (Board[2][Row] != ' '):

 xOrOHasWon = True

Mark as follows:
Change FOR loop so it iterates 4 times;
Board(4, Row); compared with Board(3, Row)/Board(2, Row);
Solution works for all 8 legal winning positions on the rows;

A Two loops (both go from 1 to 4) – both loops need to be included in
the
code shown by the candidate to get full marks
A Additional IF statements, as long as logic is correct
Max 3 4 IF statements instead of a FOR loop – one IF statement for
each
row in the grid
Max 2 if only works for four symbols in a row
Max 2 if solution detects a winning solution when it shouldn’t

Page 81 of 111

A Answers coordinates using 0 instead of 4 – only if indicated 0 th

position would be used in answer to (d)(i).
4

(viii) ****SCREEN CAPTURE****
This is conditional on sensible answers for (d)(i), (iv) and (vii).

Symbol shown in (2,4);
Winning message shown and three symbols in a horizontal line including

a symbol in position (2,4); R if solution for 45 is for four symbols in a line,
not three
The two possible positions for full marks (could be O instead of X):

A If candidate has used array position 0 instead of 4, accept a winning
position on either the bottom or top line of the board.

2

(ix) Declare Board as a 3-dimensional array; Board(4,4,4) / /Board (6,4,4);
OR
Declare 6 (one for each surface); 4x4 arrays;
OR
Declare 4; 4x4 arrays;

NE. 3D
A. Answer that imply creating a new data type / using array structure
that will be used with the Board variable; that allows 64/96 cells to be
represented;

Description of further list nesting (similar to 3d array) (Python only)
2

36

Q19.
(a)

1 mark for all 5 lines correctly drawn

Page 82 of 111

1 mark for all 5 arrowheads pointing in correct directions
Max 1 if more than 5 lines drawn by candidate (note that dotted arrow is given
in question)

A arrowheads at any position on line
2

(b) Adjacency matrix appropriate when there are many edges between vertices //

when edges may be frequently changed // when presence/absence of specific
edges needs to be tested (frequently)
Adjacency list appropriate when there are few edges between vertices // when
graph is sparse // when edges rarely changed //when presence/absence of
specific edges does not need to be tested (frequently)
A alternative words which describe edge e.g. connection, line

2

(c) Connected // There is a path between each pair of vertices;
Undirected // No direction is associated with each edge;
Has no cycles // No (simple) circuits // No closed chains // No closed paths in

which all the edges are different and all the intermediate vertices are different
// No route from a vertex back to itself that doesn’t use an edge more than
once or visit an intermediate vertex more than once;
Alternative definitions:
Graph with no cycles, and a simple cycle is formed if any edge is added to it;;
Graph which is connected, and it is not connected anymore if any edge is
removed from it;;
Graph in which any two vertices can be connected by a unique simple path;;
(Note: not just adjacent vertices)
Graph which is connected and has n - 1 edges where n is no of vertices;;
Graph which has no simple cycles and has n - 1 edges where n is no of
vertices;;

Max 2

(d)

1 mark for Jack as root
1 mark for Bramble and Snowy as children of Jack
1 mark for four correct children of Bramble and Snowy

DPT if arrows drawn instead of lines
DPT if any node has more than 2 child nodes
A “mirror image” answers which are consistent.

3

(e) For solution with 3 arrays:
One array stores data items;
One array for left child pointers;

Page 83 of 111

One array for right child pointers;
Pointers stored at same location in arrays as corresponding data item;
For solution with 1 array of records:
Record created to store data item and pointers;
One pointer to left child;
One pointer to right child;
For either of the above solutions:
Rogue value (allow example) used to indicate no child;
Variable indicates position in array(s) of root node // Root node stored at first

location/start of array(s);
If answered as diagram:
Column for data with at least three correct data items in it;
Use of rogue value for a node that does not have child;
Correct value for a start pointer variable indicating position of root node in the
array (not drawn as an arrow, array indices must be labelled);
Column for left child pointers*;
Column for right child pointers*;
* = To get these marks, there must be a sufficient number of pointers to
demonstrate that the data structure is a representation of a binary tree, but it is
not necessary for every item to be shown. Also the array indices must be
shown.

Max 3

[12]

Q20.
(a)

4,5 in sequence for ListLength;
1,2,3 in sequence for p;
4,3 in sequence for q;
Final list in array is 9, 21, 38, 49, 107;

Do not award a mark if additional values indicated e.g. 4 for p

4

Page 84 of 111

(b) Inserts an item/variable New into list at correct position/preserving order//into
sorted list (or equivalent);

1

(c) (i) Static structures have fixed (maximum) size whereas size of dynamic
structures can change // Size of static structure fixed at compile-time
whereas size of dynamic structure can change at run–time;
Static structures can waste storage space/memory if the number of data

items stored is small relative to the size of the structure whereas
dynamic structures only take up the amount of storage space required
for the actual data;
Dynamic data structures (typically) require memory to store pointer(s) to
the next item(s) which static structures do not need;
A just one side of points, other side is by implication

Max 1

(ii) Heap is pool of free/unused/available memory;
Memory allocated/deallocated at run-time (to dynamic data structure);

Max 1

[7]

Q22.
(a) (i) Picture element // smallest resolvable/rectangular area/unit (A smallest

dot) which can be drawn on screen // smallest addressable part/unit of a
picture;
smallest unit which is mapped to memory;

1

(ii) Pixels are stored as numbers/bit patterns (A values) which represent
different colours;
A or by example;

1

(b) 1;
1

(c) (picture / image) width;
(picture / image) height;

A (picture / image) dimensions
R size
image resolution / colour depth / No. of bits per pixel;
colour palette / No. of colours in image;
offset to the start of image data;
compression type;

Max 2

(d) (i) loop counter / (loop) control variable // array subscript/index;
array of Byte;
A array of Integer

2

(ii) 1101;
I. any additional leading 0’s

1

(e) (i) ThisWidth;
X;

2

Page 85 of 111

(ii) 2-dimensional array (of Byte);
1

(f)

ThisWidth ThisHeight Counter X Y ThisByte Final

8 5 0 1 1 255 [0] 25

 2 255 [1] 96

 3 255 [2] 96

 4 255 [3] 24

 5 255 [4] 24

 6 255 [5] 113

 7 255 [6]

 8 255 [7]

 2 1 255 [8]

 2 25 [9]

 1 3 25 [10]

 2 4 96 [11]

 3 5 96 [12]

 4 6 24 [13]

 5 7 24 [14]

 6 8 113 [15]

Mark as follows:
Counter has incremented from 0 to 6 (only);
X variable has incremented 1 and 2 (only);
Y variable has incremented 1 – 8 (only) at least once;
ThisByte contains first ten correct values;
Final[0] contains 25;
Final[1] to Final[5] are correct and with no other array subscripts used;

A correct six values (only) in Final array (in consecutive but wrong positions)
Max 6

(g) (i) program / constant / module / unit / user defined type / label /object /
component / control / class;

A ‘control’ by example e.g. text box, drop down list
A any elements which are SQL specific

1

Page 86 of 111

(ii) Maximum number of characters;
No punctuation characters;
No use of reserved words;
Must not start with a digit character;
case critical e.g. must start with lower case character;

A any answer which describes ‘general’ programming language
restrictions.
identifier names must be unique;free-format not allowed for certain
constructs, e.g. statement must not spread over two lines;

restrictions on identifiers used for labels;
loop control variable must be ordinal/integer;
array index range is restricted;
all variables must be pre-declared;

Max 2

[20]

Q23.
(a) (i) Empty entries waste memory // Maximum size// fixed size;

1

(ii) Memory used by pointers//takes more time to add / delete nodes//
indirect access takes more time;
R programming difficulties

1

(b) Place next item in first location/ location 0/ location 1//
Implement a circular array/queue // allow wraparound;

1

(c) IsFull/IsQueueFull;
1

[4]

Q24.
(a) CarFailed : = False

Input NextCar

For Position 1 to 4

Do

NextCategory SingleCharacter(A. NextCar; , B. Position;)

If C. NextCategory = ‘0’/ NextCategory <> ‘1’;

Then CarFailed True

Etc…
Part C – I. omission of quotes A double quotes

3

(b)

Variable Data Type Comment

Position
D Integer; E loop counter/loop control;

Takes the range of value 1, 2, 3 and 4;

Indicates the current test/category or

Page 87 of 111

suitable description;

Provides an index for the string // indicates
the position in the string;

NextCar
String

NextCategory
F Char;

CarFailed
Boolean

3

[6]

Q25.
(a) 2–D array;

1

(b) Shows that sales person 2; did meet their target; for Quarter 3 /July –
September;

Max 1

(c)

NewArray initial values all 0;
1

Person loop counter 1 to 3;
1

Page 88 of 111

Person 1 – is followed by quarters 1 to 4 in sequence;
1

NewArray[2] = 1 for person = 1 and Quarter = 2;
1

Final NewArray[1] = 2;
1

Final NewArray[2 and 3 and 4] values are correct;
1

(d) Stores the (total) number of sales staff who did not meet their target //
the(total) number of sales targets not met;
for each quarter;

2

[10]

Q26.
(a) Last (item) in, is the first (item) out / first (item) in is the last (item) out ;

R LIFO / FILO
1

(b) (i)

600 ‘A’

601 ‘V’

602 ‘E’

603 ‘R’

604 ‘Y’ ;

605

All items in the correct locations
1

(ii)

599

600 ‘A’

601 ‘V’

602 ‘E’ ;

603

604

605

Correct three items // ft from an incorrect (i) including 605 as the first

Page 89 of 111

location used ;
A ‘R’ and ‘Y’ entries indicated in some way as ‘deleted’

1

(iii)

600 ‘A’

601 ‘V’

602 ‘E’

603 ‘S’

604 ‘P’ ;

605

Correct list of five items // ft from an incorrect (i) + a correct ft (ii)

including 605 as the first location used ;
1

(c) (i) Queue ;
A First In – First Out FIFO / LILO

1

(ii) Items are removed/popped from the stack (one at a time) (and items are
then added to the queue);

1

(iii) Items leave the queue on a ‘first in-first out’ basis ; A from the front of
the queue

1

(iv) ‘Y’, ‘R’, ‘E’, ‘V’, ‘A’ on the queue ;
Y’, ‘R’, ‘E’, ‘V’, ‘A’ on the final stack ;
A using 701 for the first queue location

2

[9]

Q27.
(a) A procedure that is defined in terms of itself;

A A procedure that calls itself
R re-entrant

1

(b) Store return addresses;
Store parameters;

Store local variables/ return values;
Max 1

(c)

Number Entry Output

11 1

Page 90 of 111

11 2;

11 3;

11 4; 4;

4

(d) A linear search//
To find/output the position/index of Number in Items;

1

(e) Number is not an entry in Items// Stack overflows;
1

(f) Test for reaching the end of Items;
1

(g) Binary Search;
An iterative solution;

Max 1

[10]

Q28.
(a) Next item to be added is at position/location/address (Tail + 1);

Position/location/address Tail is the last item in the queue ;
R ‘points to the end of the queue’

Max 1

(b) Cat // item at position Head ;
1

(c)

 6

Tail 5 ‘Shark’

 4 ‘Eel’

 3 ‘Snake’

Head 2 ‘Frog’

 1 ‘Dog’

 0 ‘Cat’

Snake + Eel + Shark at positions 3,4,5 ;(1)
Tail points to 5 ;(1)
Head points to 2 ;(1)
I. Dog and Cat crossed through

3

(d) Tail will eventually reach position 99 (A 100) ;

Page 91 of 111

Head will eventually reach 99 (A 100);
Memory/queue will become full ;
Space is not re-useable ;

Max 2

[7]

Q29.

(a) Temp ← Front;
Front ← Temp.Next//Front ← Temp^.Next;
Dispose (Temp); A Free(Temp)

Alternative

Temp ← Front.Next// Temp ← Front^.Next;
Dispose (Front); A Free(Temp)
Front ← Temp;

3

(b) AddItem//Add;
1

(c) (i) Full/FullQueue;
1

(ii) No memory used for pointers;
I Faster
R Easier to program

1

(iii) Size is limited by array size;
memory wasted when not full;

2

[8]

Q30.
(a)

Number Lower Upper Current

12 1 9

 5 5

 3 3

 4 4 4

Value returned 4

1 mark for 1st row (12, 1, 9)
2 marks for second row (1 mark for each 5)
2 marks for 3rd row (3 and 3)

2 marks for 4th row (1 mark for Lower = 4, 1mark for upper = 4)
1 mark for correct return value

8

Page 92 of 111

(b) Find the position of 12/ a number in the array// search for 12/ a number in the
array;

1

[9]

Q31.

(a) Salesperson 7;
April /month 4;
The number of storecards ‘taken out’;

Max 2

(b) StoreCards + sensible subscripts [1..10, 1..6] / (1 to 10, 1 to 6) / [0..10, 0..6] /
(0 to 10, 0 to 6) / (10,6) / [10] 6];
StoreCards + Integer / Byte;

2

(c) StoreCards (8, 1);
= 13 / := 13 / ← 13;
Must be an assignment statement

2

(d) Key in / Input the employee number; the program calculates the total number
of store cards for a single person // print/outputs/displays the total for a single
person; over six months;

Max 2

(e) (i) Single / real / float;
R Floating point / Double

1

(i) Boolean /Yes-No / True-False; R Y/N / T/F
1

(iii) Integer/ byte;
1

[11]

Q32.
(a) (i) 101 0110;

1

(ii) 1101 0110 / or follow-through from ‘their 7 bit code’ from (a);
A Parity bit positioned in bit position 0

1

(b) (i) ‘D’;
R Lower case

1

(ii) ‘J’;
R Lower case

1

(c) (i) FirstName // Surname;
1

(ii) Surname // FirstName; (i) and (ii) must be different

Page 93 of 111

1

(iii) FullName;
I. any incorrect case

1

(d)

Position NextNumber NextChar FinalString

 ‘’

1 (65) ‘A’ ‘A’

2 78 ‘N’ ‘AN’

3 32 <Space> ‘AN ‘

4 69 ‘E’ ‘AN E’

5 82 ‘R’ ‘AN ER’

6 82 ‘R’ ‘AN ERR’

7 79 ‘O’ ‘AN ERRO’

8 82 ‘R’ ‘AN ERROR’

Position values incrementing to at least 4;to maximum 8;
NextNumber[2] has value 78;
Remaining NextNumber values are all correct and in correct positions;
NextChar[3] has <Space> character + NextNumber[3] is 32;
FinalString correct / f/t from their NextChar column;

6

[13]

Q33.
(a) (i) 271;

1

(ii) The required item might be the 271st one/last one/ not be present// Every
item accessed;

1

(b) (i) 9;
1

(ii) Each comparison halves the number of items to be accessed//271 lies
between 28 and 29;

1

(c)

Page 94 of 111

1 mark for Count1
1 mark for Count2
1 mark for Temp

5

(ii) (bubble) sort the items into ascending order;
1

(iii) Reduce the number of tests each pass// stop when no swaps occur
during a pass//Add a flag No Swaps to indicate when no swaps occur//
change loop control to Repeat until no swaps// sort variable sized array;

1

[11]

Page 95 of 111

Q34.
(a) (i) • poorly structured code;

• uses GoTo statements;
• the flow of control jumps out of a loop;
• nothing reported to the user when no matching name found;
• abbreviated variable for ‘position’ variable;
• ReadLn is better than Read;
• Program only iterates once / considers only the first array element;
• (if duplicates) only the first matching surname is found;
• (loop terminates at 20) does not allow for additional array /name

entries;
A poor layout - excessive indentation used;
I. variable declaration // reference to the syntax

Max 2

(ii) All statements must have correct identifier name correct data type
(String / Text // Integer / Byte / Word / Int / Shortint / Short as
appropriate)

In addition, either array must have brackets to indicate an ‘array’ 19/20
to indicate a range;

Max 2

(b) Intialisation of counter or Boolean variable
P := 1 / P := 0 / For P := 1 to 20 // IsFound := False;

Looping
LOOP UNTIL // DO WHILE // WHILE DO // REPEAT UNTIL and used at the
beginning/end of a code block as appropriate;

Some loop condition is met
(P = 20/21) OR IsFound = TRUE / P = 20/21 // IsFound = TRUE / IsFound;

IF with use of the array
IF NoOfClaims [P];

Selection condition
>4 / >=5;

Loop counter incremented
P = P+1

Final output
Correct logic followed with OUTPUT ‘Yes’

A multiple times

Final output
Correct logic followed with OUTPUT ‘No’
R Multiple times
R ‘Prose’ scores 0

5

[9]

Q35.

(a) (i) Empty entries waste space // Maximum/fixed/static size
A stack may overflow

1

Page 96 of 111

(ii) Space used by pointers // more complex to program;
1

(b) (i) The size of the stack /amount of data is known/limited/predictable
Memory saved since no pointers (if not given in a (ii))
R easier to program

1

(ii) The size of the stack is unknown//
The stack is volatile/ number of items fluctuates widely;

1

[4]

Page 97 of 111

Examiner reports

Q1.
The difference(s) between static and dynamic data structures was generally well

understood. A common answer that was not awarded marks was to simply state that static
data structures cannot be changed, this does not make it clear that the size cannot
change.

Q2.
Almost all students obtained some marks on question 8 though very few got full marks. In
question 8.1 the most common error was to state that there was a protected method
present in Figure 11. Most students got the mark for 8.2 with Warren being the most

frequently seen incorrect answer.

For question 8.3 the concept of a private attribute was better understood than a protected
attribute. Many students though that a protected attribute was an attribute that could not

be changed. Students who did well on the exam paper overall normally had no issues
answering 8.4 but students with less understanding of the code in the Skeleton Program
often gave answers that explained why knowing the number of rabbits in a warren was
useful instead of answering the question set.

Question 8.5 was not well answered with many students writing about the functionality of
the program as a whole rather than the CompressRabbitList method. Answers often

described rabbits being killed by other factors even though this was not done by this
method.

Most students were able to get some marks for writing the class definition in question 8.6.
The most common errors were to have HDRabbit inheriting from Animal instead of

Rabbit, including the gender attribute in the HDRabbit definition and not overriding the

Inspect method.

Q3.
(a) This was, for most students, the easiest of the programming questions on the paper

with about half obtaining full marks. Less confident programmers often had the
wrong logic in their conditions (either getting AND/OR mixed-up or </>). Some

students did not write code to get the validation condition to continually repeat until a

valid value was entered. A significant minority of students did not add the validation
routine to the InputCoordinate routine and instead tried to add it the constructor

for the Simulation class.

Some students used recursion instead of iteration and full marks could be obtained
from using this method if it was done correctly however many of these students did
not return the value from the recursive call to the calling routine in a way that it could
then be used by the rest of the program.

(b) The majority of students were able to get at least half the marks on this question
and were clearly familiar with how to create a method that overrides a method in a

base class in the programming language they were using. A significant minority of
students did not attempt this question and had clearly not prepared for answering
questions using OOP within the Skeleton Program.

A number of students did not identify the correct variable to use and wrote code that

Page 98 of 111

tried to change the default probability instead of the protected attribute inherited
from the Animal class storing the probability for that animal.

Some students did not call the overridden method in the base class even though the
question specified this should be done. The equivalent functionality could be
obtained by copying the code in the CalculateNewAge method in the Animal class

into the new CalculateNewAge method in the Rabbit class but this is poor

programming practice as the original code would now be in two places in the
program rather than reusing the existing code.

(c) One fifth of students did not provide any evidence of their attempt to answer this
question. All students should be encouraged to include any program code they have
written as it may be worth some marks even if it doesn’t work correctly.

The most common mistake in reasonable attempts at the tasks in this question was
to have the incorrect logic (for example, getting muddled between AND/OR) when

writing the code to prevent a warren/fox being placed in a river.

(d) Many students came up with creative answers to this question that showed a

high-level of programming and problem-solving skill. However, a large number of
students did not include any evidence of their attempt at writing the program code.
Some students showed good exam technique by including a very limited answer
which they knew was nowhere near correct but would allow them to get some marks
(most frequently for creating a new subroutine with the name specified in the
question).

The most challenging part of the question was to make sure that the solution worked
irrespective of the relative position of the fox and the warren with a number of
solutions working if the fox was to the left of and above the warren but not if it was to
the right of and below the warren.

Q5.
This question was about abstraction, object-oriented programming and linked lists.

For part (a) candidates had to explain how the LinkedList class was a form of abstraction.
Many gave a definition of abstraction but failed to apply this to the LinkedList class and so
did not achieve a mark. Good responses made clear that the LinkedList class was an
example of abstraction because it allowed a programmer to manipulate items in a linked
list without having to be concerned about how the linked list was implemented.

For part (b) candidates had to explain why the functions and procedures in the class were
public whilst the data items were not. Many candidates were able to obtain a mark for the
former, but few did so for the latter. Good responses made clear that the functions and
procedures were public as they would need to be called from outside of the class to
implement the game, and the data items were private so that their values could only be
modified in a controlled way from outside of the class, by calling the procedures of the
class. It was not sufficient to state that the data items were private because they were only

used by the class or because they should not be changed.

Candidates had to write an algorithm for deleting an item from a linked list for part (c). A
question was asked in a previous year about inserting an item into a linked list and the
standard of responses to this question was notably better than was the case in the
previous year. The majority of candidates had at least a good attempt at writing the part of
the algorithm that would find the correct item to delete and many were then able to
change the pointers to delete the item. Common mistakes and omissions were to fail to
keep track of the pointer to the previous item when searching, to release the i tem to delete

Page 99 of 111

back to the heap before changing the pointer around it or to increase the current pointer
by the fixed value of 1 on each iteration of a search loop. Few candidates scored all eight
marks. If a candidate achieved seven but not eight marks this was usually because the
algorithm did not take account of the fact that the item to delete might be the first item in
the list, in which case the start pointer would need to be changed.

Q6.
This question was about the use of hashing.

In part (a) candidates had to compare the efficiency of searching a hash table with

searching an unordered list. There were many good responses to this which explained
that a slow linear search would be required for an unordered list but a fast calculation of a
hash value is all that would be needed for the hash table implementation, and using this
the location of the translation could be directly found.

For part (b) candidates had to explain what a collision was and how it could be dealt with.
The majority of candidates appeared to understand both of these but some failed to
achieve marks by not stating points explicitly. For example, too many candidates failed to
explain the basic point that if two items hashed to the same value then they would be
stored at the same location, and the second value would overwrite the first. Various
sensible methods of dealing with a collision were well described.

Part (c) required candidates to explain why the English word had to be stored in addition
to the French word. Some correctly identified that when performing English to French

translation, if two English words had hashed to the same value, it would not be possible to
tell which the correct translation was unless the English word was stored. A small number
of candidates incorrectly believed that the translation was being done in reverse (French
to English) and explained that the hash function would be one-way, which whilst true was
not a correct answer to the question that had been asked.

Q7.
Answers to Section C were often of poor quality and very few students achieved good
marks on this question. A number of students are still including additional code when
asked for the name of an identifier (parts (a) – (c), though there were fewer students this
year who were doing this. This means that they are not getting the marks for these
questions as they have not made it clear which entity is the identifier (sometimes there is
more than one identifier in the lines of code that they have copied from the Skeleton

Program).

Parts (d) – (f) were not well answered. Many students could find one error in the decision
table for part (f) but few could find more than one. Answers to parts (d) and (e) were often
vague with many students providing answers that were about different parts of the
Skeleton Program from the ones asked for in these questions.

Q8.
(a) This was a fairly straightforward programming question with most students getting

good marks. Some students did not read the question carefully and created a
selection structure instead of a loop that would repeatedly get a value from the user
until a valid value was entered. A number of answers were seen where a recursive
solution was attempted but the name entered was not actually returned to the calling
routine.

A significant number of students did not complete the test specified in the question,
often entering their own name as test data.

Page 100 of 111

(b) Most students got reasonable marks on this question. Less able students
sometimes got confused between the < and > operators and a number of students
only compared the suits of the two cards – forgetting to compare for rank equality.

(c) This was a more challenging question and was a good discriminator between
students. It was pleasing to see some interesting answers to this question where
able students had clearly thought through the problem and come up with their own
method for solving it under exam conditions.

Most students were able to adapt the code so that it would allow a joker to be
played, though a number did not attempt to write code that would limit the number of

jokers that could be played.

(d) It was disappointing that a large number of students did not include any attempt at
answering the question. There was a mark available just for creating a
correctly-named subroutine (even if the subroutine did not do anything or use any
parameters) and a mark for displaying a message (even if the message did not
include the calculated probability). Students should be encouraged to include partial
solutions to questions they have not been able to answer wholly successfully.

As was the case for the last few years, less able students often struggled to create a
new subroutine even though there are numerous examples of subroutines in the
Skeleton Program. Again, a number of students developed a solution that would
correctly calculate the probability but just included code inside the subroutine that
displayed this value rather than setting up a mechanism to return the calculated

number to the calling routine.

Q9.
(a) The overwhelming majority of students were able to correctly identify that it was the

binary search algorithm that required the list to be sorted for this part.

(b) The trace for this part was also well completed with about three quarters of students
getting some marks and well over half getting full marks.

(c) For this part, around half of the candidates were correctly able to explain that the
value of InnerPointer did not decrease to zero because either the second while loop
condition was not

(d) For this part, about two thirds of students correctly identified that the algorithm that
they had traced was of time complexity O(n2).

(e) This part was poorly answered, with only about one third of students correctly

identifying that the algorithm they had traced was an insertion sort. Bubble sort was
a far more common but incorrect response.

(f) Parts (i), (ii) were all well answered. The most common error in both parts of was to
perform a traversal of the tree instead of using it as a binary search tree.

(g) This part was all well answered. The most common error in both parts of was to
perform a traversal of the tree instead of using it as a binary search tree.

Q10.
(a) This part was well tackled with over two thirds of candidates recognising that a

queue was an appropriate data structure to represent the deck of cards because it
was a first-in-first out structure.

Page 101 of 111

(b) (i) Just over half of the candidates were able to correctly update the pointers to
the queue in this part

(ii) And just under half were able to do likewise in this part. In the former, the most
common mistakes were to change FrontPointer to 10 instead of 11 and to
leave QueueSize at 52. In the latter, the most common mistake was to change
RearPointer to 54, failing to recognise that this was a circular queue and
RearPointer should change to 2.

(iii) Students achieved a broad range of marks on this part which required them to
write an algorithm for dealing a card. Over two thirds got some marks, but just

under 10% scored full marks. The most commonly made mistakes were to try
to deal more than one card, to fail to wrap FrontPointer back to the start of the
array when it went past the end of it, and to deal a card when the deck was
empty.

(c) This part was well answered, with most students recognising that in an event-driven
program, subroutines would be associated with events, such as a button being
clicked or a timer reaching 0, and that the appropriate subroutine would be called
when the event occurred. Some responses were not considered creditworthy as
they could have applied to any style of programming, for example “the program
waits for user input before executing instructions”.

(d) Approximately two thirds of students achieved some marks for comparing a mobile
phone operating system and a desktop operating system in this part of the question.

A common mistake was to compare the devices rather than the operating systems,
for example stating that the desktop would have more memory that the mobile
phone. Many students explained that the mobile phone OS would have lower
hardware requirements but it would have been nice to see some more concrete
examples of these reduced requirements, and phrases such as “smaller” and “more
lightweight” were used too often. Some students gave responses to a question from
an earlier paper that were not appropriate for this scenario.

Q11.
For part (a) almost all candidates were able to identify the content of the root node
correctly. Leaf nodes were more problematic, with many candidates believing that all of
the nodes that were not the root were leaves, and thus mistakenly included “+" in the list
of contents of leaf nodes. Nevertheless just over half of the candidates achieved full

marks for this question part.

Part (b) was poorly tackled, with only a third of candidates getting more than one mark.
The most common error was to state that arrays B and C were used to store the left / right
hand subtrees. Candidates needed to make clear that the arrays were storing pointers to
these subtrees to be awarded the marks.

For (c), responses were disappointing with many candidates showing no understanding of
the purpose of the entry 0 in the array. Others stated that it indicated that a node was a
leaf node, or had no children, when in fact the 0 in array B only related to the left hand
subtree so nothing could be told from it about whether or not a node had children without
also consulting array C.

Part (d): candidates usually find recursive traces to be quite difficult. On this occasion,
about half of them got at least one mark for the trace, and a quarter achieved all four

marks.

For part (e), about a third of candidates made the expected response, but a

Page 102 of 111

disappointingly large number wrote answers that were not even types of tree traversal.

For part (f), almost all of the candidates who had correctly completed the trace table and
obtained the output recognised that this was the Reverse Polish Notation equivalent of the
infix expression in the expression tree.

Q12.
For (a), about three quarters of the candidates achieved one or two marks for this
question part. The most common creditworthy response was that the size of a dynamic
data structure could change at run time whereas a static data structure's size was fixed at

compile time. Some candidates missed out on this mark by making the vaguer statement
that a dynamic structure could change at run time whereas a static structure could not,
without any reference to size. Some candidates lost a mark by just giving opposite sides
of the same point.

Question (b) was well answered. Some candidates missed out on one mark scheme point
by writing that all elements in the array would have to be moved down, without making
clear that it was only the elements below the insertion point that needed to move. Many of
this group of candidates nevertheless achieved full marks by making other valid points. A
small but surprising number of students wrote about deleting an item when the question
was about inserting one.

For part (c), just over half of the candidates correctly identified that this was a priority
queue.

For part (d)(i), only about a quarter of the candidates offered a reasonable explanation of
what the heap would be used for. Many stated that it would be used to store the list or to
store pointers. Some asserted that it would be used to store new items, which was a
better response but was not creditworthy as the suggestion was that the new items would
be stored in the heap. Good responses recognised that when a new item was added,
memory would be claimed from the heap to store the new item.

Part (d)(ii) was poorly answered with only about a third of the candidates recognising that
the pointer value was a memory address. Answers referring to a value being an index or
location were not enough for a mark without further explanation that made clear that this
was to a memory location.

In part (d)(iii), this algorithm was the most complex one that candidates have been asked
to write on a COMP3 paper. Answers given in pseudo-code or structured English were
acceptable and all reasonable styles of syntax were marked as we are aware that

candidates will have used different programming languages. Responses written in prose
were acceptable if they included clear steps and showed how the variables would be
updated. There were very few prose answers, but they often scored poorly due to being
too general.

There were some very good responses and marks were awarded later on in the
algorithms even if earlier parts were not working, although this was not always possible as
sometimes whether or not later parts of the given algorithm worked depended
fundamentally on earlier parts.

The most common misconception was to treat the linked list as if it were a list stored at
sequential locations in an array and to adjust the CurrentNodePointer by adding one onto
it inside a loop rather than by setting its value to the NextNodePointer of the current node.
It remained possible to pick up some marks for this type of implementation by, for

example having a suitable loop.

Page 103 of 111

Very few candidates, even those achieving almost full marks, included the step of actually
claiming the memory from the heap to store the new item in.

A small number of candidates produced recursive solutions which were also accepted.

Q13.
For the first time a flowchart was used to represent an algorithm in a COMP1 exam. There
was no increase in difficulty resulting from this and the standard of answers was the same
as seen in the previous year.

Some students did not follow the algorithm given and instead developed their own

program to convert binary to denary. This resulted in them not getting many marks as they
had not answered the question.

Students using VB6 tended to get lower marks on this question than those using the other
languages available for COMP1. This was partly due to not providing the correct evidence
for the testing (screen captures needed to show the data entered for the test as well as
the result of the test), although many students using VB6 also seemed to have weaker
programming skills.

Students need to be aware that an algorithm is not the same as a program and that simply
copying the algorithm into their development environment will not result in a working
program in any of the COMP1 programming languages – the pseudo–code/flowchart
needs to be adapted to match the syntax of the programming language they are using. As
in previous years, a number of students simply copied parts of the algorithm into their

program code eg trying to use a keyword of OUTPUT. These appeared to be less able
students who generally struggled on the Section D programming as well. The vast
majority of students were able to convert the algorithm successfully into working program
code and the marks obtained on this question were virtually identical to those achieved on
Section B on the 2011 COMP1 exam.

Q14.
Answers to this section were often of poor quality and very few students achieved good
marks on this question.

A number of students are still including additional code when asked for the name of an
identifier. This means that they are not getting the marks for these questions as they have
not made it clear which entity is the identifier (sometimes there is more than one identifier
in lines of code that they have copied from the Skeleton Program). To reduce the chance

of errors, when asked to give the name of an identifier students should be encouraged to
copy and paste the identifier from the Skeleton Program, rather than typing the identifier
into the EAD.

Very few students showed any understanding of binary files, even though these were
used in the Skeleton Program. Part (a) was answered better than most other parts of
Section C with most students able to give at least one reason why the use of global
variables should be avoided. The majority of students were also able to state an
advantage of using a named constant.

Q15.
Most candidates were not well prepared for this section and did not do as well on these
questions about the Skeleton Program as they did on the questions where they were
asked to modify the Skeleton Program. In particular, little understanding of structure

charts or decision tables was shown by a significant number of candidates.

Page 104 of 111

It was pleasing to note that most candidates only gave the name of an identifier when
asked to do so – those who copied and pasted sections of code from the Skeleton
Program did not get the marks for these questions as they had not demonstrated that they
understood what an identifier is (some candidates gave answers that contained multiple
identifiers). Some candidates did not get the mark for giving an example of a constant
declaration as they provided only the name of the constant. Candidates should ensure
that when asked for the name of an identifier they provide only the identifier in their
answer and when asked for an example of a type of program statement that the entire
program statement is given in their answer.

For part (n) many candidates described the repetition structure rather than the selection
structure inside the repetition structure.

Q16.
Part (a): This question part was very well answered with the majority of candidates getting
both marks. The only common mistake was to miss out the brackets in the expression that
should be (12+19)*8.

Part (b): As with part (a), this question part was also well answered. The most common
correct response was that brackets are not required. It would have been nice to see some
more detailed explanations of this point, rather than just a brief statement of it. A common
incorrect answer was that RPN was easier for a computer to understand. The word
“understand” is not appropriate in this context.

Part (c): Responses to this question part were excellent, with relatively few errors made.
The majority of candidates got full marks which is unusual for a question involving a trace
table. The only two recurring mistakes were to pop the numbers off the stack in the wrong
order, resulting in the transposition of the values in Op1 and Op2 and forgetting to push
50 back onto the stack at the very end.

Part (d): This question was well answered, with most candidates getting some marks and
a significant number more than half marks. The most common mistake was to increment
the TopOfStackPointer in the wrong place – either before the If construct which

tested for the stack full condition or after the value in ANumber was stored into the

StackArray. Some candidates implemented solutions that used a loop to find the first

empty position in the array to insert the number into. These were awarded credit if they
would have worked, but many failed to test properly for the stack being full. It is important
that candidates use the correct variable names when they are given on the question
paper.

Q17.
Part (a): This question part was poorly answered with many candidates giving vague
responses or explaining what a simulation is rather than a model. In this context, a model
is an abstraction of the real-world problem that leaves out unnecessary details. Some
candidates confused a model with a prototype.

Part (b)(i): Again, this question part was poorly answered. A significant number of

candidates appeared to have no understanding of what was being asked, although more
than half got at least one mark. Candidates who made a reasonable attempt at an answer
often named two pointers, but then offered inadequate explanations of their purpose. For
example, the purpose of the pointer to the end of the list is to enable new items to be
added to the list, not simply to know where the end is.

Part (b)(ii): Some candidates correctly identified that a priority queue was required, but
many invented new types of queues.

Page 105 of 111

Part (c): This question part was well answered with many candidates giving well thought
out answers such as determining whether the next person entering the cafeteria was a
student or teacher or generating a time taken to serve the person at the front of the
queue. The most common incorrect answer was the number of people / students /
teachers in a queue. In each case, the number in a queue would be a consequence of
other randomly determined occurrences rather than determined randomly itself.

Q18.
(a) The checks for a valid YCoordinate were done correctly by most candidates. Some

candidates dropped marks by having code that would not return the correct value
from the function (by adding the validation checks after the value was assigned to
the function) or by combining the XCoordinate and YCoordinate checks in one

statement with an AND operator (this would not work unless brackets were added in
the correct places).

The check for overwriting moves was harder and was not done as well as the
YCoordinate check. Code that would not compile was often seen. Many candidates

did not ensure that the overwriting of moves was only checked for if the coordinates

were valid – this would result in checking an out-of-bounds position on an array
which could cause the program to crash when run (e.g. VB.Net) or to return spurious
results by checking a different memory location (e.g. Pascal). A few candidates
(mostly in Java and C#) used exception handling to deal with this problem. While
this was not on the mark scheme it was deemed to be worthy of the mark available,
though it would be better practice to write code where exception handling was not
needed.

Some candidates had either code that would not compile for the overwriting check
or code that would crash when tested with an out-of-bounds coordinate but they had
included screen captures for part (ii). Marks were not awarded for part (ii) in these
cases as the marks were dependent on the code from part (i) – these candidates
had run a different version of their code for their testing from that they had included

for part (i).

(b) Most candidates did very well on this question and had obviously anticipated that
this would be asked and prepared for it accordingly.

Some answers clearly demonstrated that checking for a win on a row/column being
in a loop had not been understood, as they put the check for a line in a diagonal in a
loop that repeated three times unnecessarily e.g.

For Diagonal = 1 To 3

 Do

 If Board(1,1)= Board(2,2) And Board(2,2) = Board(3,3)

 And Board(2,2) " " Then XorOHasWon := True

(c) Most candidates answered this question well. A few dropped marks for part (ii) by
showing a drawn position for a second or third game in a match. Part (i) asked for
the code for the selection structure used in the Skeleton Program – if this was not
included (i.e. candidate only included the code for adding to the scores) then only

one mark could be awarded. Some candidates added a new selection structure
rather than amending the existing structure as asked for in the question – again only
one mark was awarded in this case.

(d) Answers to this question were generally good with many candidates getting full
marks for parts (i) to (vi). The most common incorrect answer for part (ii) was to
change the maximum number of moves to 12, not 16. Part (vii) was more

Page 106 of 111

challenging and many candidates dropped marks here. Many incorrectly gave
(correct) code for 4-in-a-row rather than 3-in-a-row. Another common error was to
add a second loop for the rows that went from 2 to 4 instead of 1 to 4. Some
candidates did not read the question carefully and gave an answer that checked for
a win in a column not a row. Part (viii) was done well by those who had done part
(vii); some candidates did not read the question carefully and did not test for a
winning row in the position asked for. There were a lot of correct answers for part
(ix) although some dropped a mark by stating the change and not describing it as
well. It is important that candidates recognise key words used in questions, like

describe and explain, and understand how these should be answered. The most
common correct answer was actually the one not on the specification about using a
3D array. A significant number of candidates did not describe how the data structure
could be represented and instead wrote about how the displaying of the board would
have to be modified.

Q19.
Part (a): The use of the adjacency matrix was clearly well understood with all but a few
candidates achieving full marks.

Part (b): There were some good responses to this question part, but also quite a lot of
confused answers. An adjacency matrix is more appropriate when there are many edges
in a graph, or if these edges need to be checked or updated frequently. An adjacency list

is appropriate for graphs with few edges (sparse graphs) or where the edges are not
checked / updated frequently.
Neither the number of vertices in a graph nor the available memory would influence the
choice.
There was confusion over the use of terminology with some candidates apparently using
the term vertex to mean edge.

Part (c): This question part was poorly answered, with only a third of candidates scoring
any marks. A tree is a graph that is connected, undirected and has no cycles. Some
candidates gave responses that referred only to specific types of tree, either rooted trees
or binary trees.
These responses did not gain credit.

Part (d): The vast majority of candidates knew how to construct a binary search tree. The
most common cause of error appeared to be candidates forgetting the order of the letters

in the alphabet rather than forgetting the principles that should be used to construct the
tree. A small number of candidates mistakenly drew arrows instead of lines between
nodes.

Part (e): There were some good responses to this question part but many were
disappointing and a surprising number of candidates did not write a response at all. Many
candidates who did answer chose to use a diagram to illustrate their response which was
quite acceptable, so long as the diagram included enough detail to make clear that it was
a representation of a binary tree.

Q20.
Part (a): This question part was very well answered with the many candidates getting full
marks.

Part (b): The algorithm inserted an item into an ordered list at the correct position. Some
candidates lost marks by failing to refer to the ‘correct position’. Others stated that a sort
was performed which was not true, as the order of the items in the existing list was not
changed.

Page 107 of 111

Part (c): For part (i), around half of the candidates were able to explain that a static data
structure has a fixed size which could not change at compile time, whereas the size of a
dynamic data structure can change at runtime.

There were few correct answers to part (ii). The heap is a pool of available memory
locationsand as the linked list grew, memory would be allocated to it from the heap and
deallocated memory would be returned to it. Some candidates erroneously believed that
the heap would be used as a temporary store or that the pointers in the linked list would
be stored in the heap.

Q22.

(a) See earlier comment in the General section of this Report.

(b) All that was required in this question was the association between a number value
and a colour, and hence that different numbers are used to represent different
colours. The suspicion was that the candidates were not clear of the meaning of the
word 'encoding' in the question stem. Some candidates described the idea that the
picture was formed by putting together many pixels. A common misconception was
that the pixel value stored its location.

(c) A common wrong answer – as seen in a previous examination – described 'data
which is stored in the file directory' (not the file header).

(d) (i) Very poorly answered, despite a very similar question on a recent January
series question paper.

(e) (i) Well answered.

(ii) Often candidates latched on to the term 'data structure' and then chose from
the stack, queue options, failing to appreciate that an array is referred to as a
data structure.

(f) On the one previous question paper on which the algorithm trace used a nested
loop, the quality of answers seen was encouraging and the Report commented on
this. Alas, the impetus was not maintained, and the number of candidates who were
able to score 5 or 6 marks was small. The common error on the better scripts was
not to make the final increment of the Counter variable value 6.

(g) (i) Most candidates came up with a valid answer from the large range deemed
acceptable.

(ii) Many candidates were able to come up with two restrictions on the choice of
identifier names. Some scored 1 mark only by quoting two near identical

reasons e.g. cannot contain a 'comma' character followed by 'cannot contain a
question mark' character. Some candidates answered their own question e.g.
'cannot store a text character in a integer data type variable'. Other candidates
read the question as 'general restrictions' of the programming language and so
gave answers such as 'variables must be declared before they can be used,'
Answers of this nature were given credit.

Q23.
This question produced many disappointing responses. The question was specifically
about a queue but many candidates failed to grasp this. There were a large number of
responses that showed that the candidate was concerned about the difficulties of inserting
or removing items from the middle of the queue. There was a mixed response to part (a).

Page 108 of 111

Many candidates were well prepared and were able to give satisfactory responses.
However, a large number of candidates were unable to express themselves clearly and
there was a sizeable minority who seemed to be unprepared for this question.

In part (b) it was pleasing to see the large number of candidates who understood that a
circular implementation was required. There were a number of misconceptions, in
particular a number of candidates suggested looking for empty spaces in the middle of the
array where items had been removed.

Part (c) was badly answered with many wild guesses showing a lack of comprehension.
Few candidates showed that they understood that the array was being used to implement

a queue and that a queue operation was required. Even fewer recognised that the array is
finite and that this will affect the implementation of the queue.

Q24.
(a) The algorithm given contained a single loop, one selection statement and a

function. However, the majority of candidates were unable to correctly complete the
given algorithm, which begs the question - how many candidates would be able to
write a similar algorithm from scratch?

(b) The candidates were given for the first time a specific list of data types from which
to choose. This approach is likely to be used again. If other data types are to be
used in future questions e.g. Date, then they would clearly be included in a given
table.

Candidates did better for D and F, although securing a mark for the purpose of the
Position identifier for E was more elusive.

Q25.
It has been commented on in previous papers how the standard of candidates’ answers
for this question has improved and this continued with this paper.

In part (c) a nested loop (given for the first time) was the key control structure and the
majority of candidates identified this. Some confused the nesting, although were still able
to secure 5 of the available 6 marks. The most commonly lost mark was at the start of the
algorithm for the failure to initialise the array.

Generally part (d) was well answered. Where a mark was lost the suspicion was that it
was through poor expression, not lack of understanding of the algorithm. Incorrect
answers often stated the numbers for individual sales staff or started to include the

concept of target setting, etc.

Q26.
(a) The majority of candidates were able to describe a stack structure as a ‘first in last

out’ or ‘last in first out’ operation.

(b) The weaker answers seen here moved values to a different memory location once
additions and deletions occurred, or used location 605 as the first available and so
qualified for a maximum of two (only) ‘follow through’ marks.

(c) Many candidates were clear about the basic operation which was taking place but
then their communication skills let them down in the descriptions required for (ii) and
(iii). For (ii) the answer looked for was the idea that items leave the stack one after
the other. For (iii) a description was required for the principle of operation of a

Page 109 of 111

queue.

Q27.
Candidates generally scored well on this question. Recursively-defined was well
understood although many candidates were unable to describe the use of the stack well
enough. It was pleasing to see the majority of candidates obtaining most of the marks on
part (c). Candidates often failed to obtain the mark for part (d) due to inadequate
descriptions. Although many candidates provided a situation where the algorithm will fail,
fewer were able to suggest a suitable modification. Once again this was often due to an

inability to express themselves well. A wide range of answers were supplied for part (g)
but a substantial number of correct responses were given.

Q28.
This was the first time this topic was assessed with a question like this, but it was well
understood by most candidates.

(a) This mark proved elusive for the majority, as an answer which suggested the
pointer indicated a location or address value was required. The majority of answers
seen simply suggested that “it indicates the end of the queue” and was considered
insufficient.

(c) The diagram generally scored well. A common error was to leave the head pointer
at address 0.

(d) This was another question where candidates were often let down by their poor

expression; the examiner often suspected that the candidate knew that continual
addition would result in the queue running out of space, but the candidate was
unable to express this. Answers which vaguely stated that the queue ‘runs of out
addresses’ were considered insufficient.

Weaker candidates simply said that continually changing the pointer values would
prove difficult to keep track of, with the implication that this was a human task and
not performed by the computer. Some candidates suggested wrongly that head and
tail could reach the same value at which point the queue would become unusable.

Q29.
This question discovered that most candidates did not really understand the concept of a
queue as a data structure. Throughout the question many candidates referred to
insert/delete operations thus showing a lack of understanding of the operation of a queue.

Part (a) was quite beyond the ability of most candidates and this suggested that they had
never attempted to program a queue using a linked data structure. Very few candidates
recognised that the value of Front had to be stored in a temporary variable in order to free
the memory used. The answers to part (c) suggested that they had not programmed a
queue using an array either. Most candidates, however, managed to obtain some marks
on this question, most frequently parts (c)(i) and (c)(ii). Many marks were lost in part (c)(iii)
due to inadequate descriptions.

Q30.
Very few candidates did not get some marks for the trace and many returned full marks
for this part of the question. Some candidates who did achieve full marks on part (a) could
not say what the algorithm does. Many candidates seemed to make a wild guess.

Page 110 of 111

Q31.
This was the first question paper on which two-dimensional arrays had been set and the

answers seen were encouraging.

(a) Most candidates correctly described that this was the issues figure for salesperson
7 in month 4. Some candidates described the figure as the highest sales figure for
April which gained no credit.

(b) Only better candidates wrote an acceptable declaration statement which required
the correct identifier StoreCards with the correct subscripts in the correct order.

(c) Few acceptable statements were seen.

(d) Encouragingly, this was well answered, with most candidates able to describe the
purpose of the algorithm. Answers which did little more that re-write statement(s)
from the given algorithm into a narrative form - e.g. “person total set to zero” - which
was little different, did not gain credit. The common error was stating that the
algorithm calculated a total for ‘each’ salesperson.

(e) Somewhat surprisingly – despite similar questions on previous papers - candidates
were often unable to state a correct data type, which would suggest the fundamental
concept in programming that “identifiers will have a stated or implied data type” is
not understood.

For (ii) almost all gave Boolean, with every possible phonetic spelling, and some
gave integer for (iii). Real/Float or other acceptable alternatives for (i) were rare.

Q32.
(a) Most candidates were able to write the correct binary pattern and successfully add

a correct parity bit. Candidates need reminding that it is normal practice to use bit
position 7 (the left-most bit) for the parity bit.

(b) (i) Most candidates wrote character ‘D’.

(ii) Some candidates left the answer as 74 failing to use the Chr() function as the

final step.

(c) All candidates scored well for the structure chart appreciating that such a diagram
can be used to represent the interface of a function. The mark scheme was
generous in allowing a mixture of case used in the identifier labels in the diagram.
This might not gain credit in future papers.

(d) This question was well answered by the majority of candidates - possibly as there
had been a ‘build up’ to the algorithm in the earlier parts of the question.

This is an encouraging trend as the algorithm contained a loop, the use of functions,
the use of arrays (which had been poorly tackled on previous papers), yet
candidates scored highly.

Q33.
It was pleasing to see many good answers to parts (a) and (b) although a number of

candidates failed to obtain full marks through inadequate explanations. Part (c) was
disappointing with few candidates completing the trace table correctly. Nevertheless it was
pleasing to see a greater number of candidates able to partially complete a dry run. A
surprising number of candidates were able to state that this was a bubble sort even

Page 111 of 111

though they failed to complete the trace table. Fewer were able to give a suitable
improvement. The most common incorrect suggestion was to “make the algorithm
recursive”.

Q34.
(a) (i) The use of GoTo statements has not previously been examined on this paper

and most candidates struggled to suggest a single reason why this was poorly
designed code, despite a large number of acceptable answers. The most
common correct answers were that the use of GoTo statements gives rise to

code which is difficult to follow and trace; there is no output produced when
the SearchName value is not found; when there is more than one occurrence
of SearchName in the PolicyHolder array, the program will output the number
of claims value for the first occurrence of the name only.

(ii) Few marks were obtained here with most candidates failing to give the bounds
of the array for PolicyHolder or NoOfClaims, or omitting a data type for the
identifier.

(b) Candidates should be able to write small amounts of program code in a unit that
has the word ‘programming’ in its title. Knowledge of loops other than a For loop
was rare. It was hoped that candidates would have constructed a Repeat – Until or
While loop which terminated when a NoOfClaims value of 5 or more was found.
Candidates who used a For loop were, however, still able to score the maximum 5

marks.

Examiners were not looking for the correct use of exact syntax for the language as
stated by the candidate.

The use of IF statements was better understood, but this often did not extend to
using an array index for the NoOfClaims as part of the IF statement. Very many

candidates used the maths operator incorrectly, e.g.  or more usually =>. Quite a
few candidates reversed the logic testing for <5 and gave appropriate output for
which they gained marks. Most popular languages seen were Pascal and Visual

Basic but the candidates that used C on the whole answered the question very well
indeed.

Q35.
Although a short question, it proved difficult for most candidates. Many missed the point
that both part (a) and part (b) were about the implementation of a stack, and in part (b)

gave answers that were about applications that were suitable for a linked list or an array.
However, we can note one particularly lucid answer to part (a)(i): “This is a static data
structure with a finite pre-declared capacity.”

