

2.1 Atomic & Electronic Structure

Mark Schemes

Exam Papers Practice

To be used by all students preparing for DP IB Chemistry HL Students of other boards may also find this useful

The correct answer is A because:

- The atomic number of sodium is 11, so it has 11 protons
- Its mass number is 23, so it has 23 11 = 12 neutrons
- The Na⁺ ion has a single positive charge meaning it has lost an electron, so it has 11 - 1 = 10 electrons

B is incorrect as ²⁷Al is an atom and therefore has the same number of protons and electrons, in this case, 13

C is incorrect as ¹⁹F-has 10 electrons and 10 neutrons

D is incorrect as ³²S² has 16 neutrons and 16 protons

2

The correct answer is **B** because:

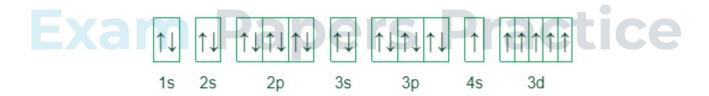
- Atoms are electrically neutral as the overall negative charge produced by the electrons is cancelled by the overall positive charge produced by the protons
- Since there are equal numbers of protons and electrons, then these
 particles must have an equal but opposite charge

A is incorrect as the difference in mass does not affect the charge

C is incorrect as neutrons are electrically neutral

D is incorrect as the position of each particle is irrelevant as long as they are part of the same atom

The correct answer is C because:

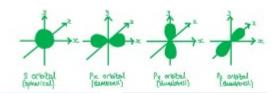

- The bulk of the mass is concentrated within the nucleus which holds the protons and neutrons
- The negatively charged electrons are outside the nucleus moving around in shells

A, B & D are incorrect as statements 2 and 3 are correct. Statement 1 is incorrect as the electrons are moving in their respective shells which spreads the negative charge around the outside of the nucleus

The correct answer is **D** because:

- The electronic configuration of chromium is 1s² 2s² 2p⁶ 3s² 3p⁶ 4s¹ 3d⁵
- There are 5 unpaired 3d electrons and 14s electron, giving a total of 6 unpaired electrons as shown in the electron box notation for chromium

A is incorrect as sulfur has 2 unpaired electrons in the 3p subshell:


B is incorrect as iron has 4 unpaired electrons in the 3d subshell:

 ${f C}$ is incorrect as carbon has 2 unpaired electrons in the 2p subshell: $1s^2 2s^2 2p^2$

The correct answer is **D** because:

- The s orbital is spherical in shape and the p orbitals are dumbbellshaped
- The p_x lies along the x-axis and the p_y lies along the y-axis

A, B & C are incorrect as these options do not correctly label each orbital.

You are required to know the shapes of s and p orbitals, but not d orbitals

6

The correct answer is **B** because:

- With an atomic number (the number of protons) of 17, the element is chlorine
- In atoms, the number of protons equals the number of electrons
- The chloride ion, Cl⁻, has a single negative charge and therefore has
 one more electron than the chlorine atom = 18 electrons
- It's electronic configuration is thus the same as argon which is 1s² 2s² 2p⁶ 3s² 3p⁶

A, C & D are incorrect as these options do not provide the correct electronic configuration of the chloride ion

The correct answer is D because:

- The electronic configuration of vanadium is 1s² 2s² 2p⁶ 3s² 3p⁶ 4s²
 3d³
- The energy of each successive orbital is higher than the previous one
- Therefore in order of decreasing energy, the notation is written in reverse order which matches option D

Remember:

- The energy level of the "d" orbital is between the "s" and "p" orbitals
 of the next shell
- Therefore in increasing energy, it would be 4s, 3d, 4p
- Electrons fill orbitals with lower energy first, therefore the 3d subshell will be filled before the 4p
- d orbitals can hold up to 10 electrons

A is incorrect as it places the orbitals in order of increasing energy

B & C are incorrect as the sequence does not place the orbitals in the correct order

The correct answer is A because:

- The atomic number is 27 hence there are 27 protons in the nucleus so the relative charge of the nucleus is +27 as each proton has a +1 charge
- There are 60 27 = 33 neutrons

B & **D** are incorrect as isotopes of the same element have the same number of protons but different numbers of neutrons

C is incorrect as statement 1 is also true

The correct answer is A because:

- Relative atomic mass reflects the abundance and mass of the all the isotopes
- The spectrum shows the abundance of the isotope ⁷⁰X is greater than the abundance of the ⁷²X, so the average atomic mass must be below 71, but above 70

Answer **B** is incorrect as atoms are converted into **cations** before they are separated in the **mass spectrometer**

Answer **C** is incorrect as the most abundant isotope (which has the tallest peak) has mass 71, but that mass consists of neutrons and protons

Answer **D** is incorrect as the deflection of particles is related to their mass; smaller light particles are deflected more, so ⁷²X will be deflected the least

10

The correct answer is B because: ers Practice

- The atomic number of Mg is 12, so the number protons is 12
- The number of neutrons in ²⁶Mg²⁺ must be 26-12 = 14 neutrons
- The +2 charge means that the particle has lost two electrons
- The number of electrons is the same as the number of protons in a neutral atom
- The number of electrons is 12-2 = 10 electrons
- So there are 12 protons, 14 neutrons and 10 electrons

Remember to subtract electrons for positive ions and add electrons for negative ions