

Exam Papers Practice

Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark schemes
Suitable for all boards
Designed to test your ability and thoroughly prepare you

2.1 Atomic \& Electronic Structure

IB Chemistry - Revision Notes
www.exampaperspractice.co.uk

2.1.1 The Nuclear Atom

Mass \& Charge Distribution

- The mass of an atom is concentrated in the nucleus, because the nucleus contains the heaviest subatomic particles (the neutrons and protons)
- The mass of the electron is negligible
- The nucleus is also positively charged due to the protons
- Electrons orbit the nucleus of the atom, contributing very little to its overall mass, but creating a 'cloud' of negative charge
- The electrostatic attraction between the positive nucleus and negatively charged electrons orbiting aro und it is what holds an atom to gether

The mass of the atom is concentrated in the positively charged nucleus which is attracted to the negatively charged electrons orbiting around it

Types of Subatomic Particles

- The protons, neutrons and electrons that an atom is made up of are called subatomic particles
- These subatomic particles are so small that it is not practical to measure their masses and charges using conventional units (such as grams or coulombs)
- Instead, their masses and charges are compared to each other, and so are called 'relative at o mic masses' and 'relative ato mic charges'
- These are not actual charges and masses, but rather charges and masses of particles relative to each other
- Protons and neutrons have a verysimilar mass, so each is assigned a relative mass of 1
- Electrons are 1836 times smaller than a proton and neutron, and so their mass is often described as being negligible
- The relative mass and charge of the subato mic particles are:

Relative Mass \& Charge of Subatomic Particles Table

Subatomic Particle	Relative Charge	Relative Mass
Proton	+1	1
Neutron	0	1
Electron	-1	$\frac{1}{1836}$

Exam Tip

You can see from the table how the relative mass of an electro n is almost negligibleThe charge of a single electron is $-1.602189 \times 10^{-19}$ coulombs, whereas the charge of a proton is +1.602189 x 10^{-19} coulo mbs. However, relative to each other, their charges are -1 and +1 respectively. This information can also been fo und in the IB Data Booklet

2.1.2 Deducing Subatomic Particles

Atoms: Key Terms

- The atomic number (orproton number) is the number of protons in the nucleus of an atom and has the symbol Z
- The atomic number is also equal to the number of electrons that are present in a neutral atom of an element
- E.g. the ato mic number of lithium is 3, meaning that a neutral lithium ato m has 3 proto ns and, therefore, also has 3 electrons
- The mass number (or nucleon number) is the total number of protons + neutrons in the nucleus of an atom, and has the symbol \boldsymbol{A}
- The number of neutrons can be calculated by:

Number of neutrons = mass number - atomic number

- Protons and neutrons are also called nucleons, because they are found in the nucleus

- Exam Tip

The mass (nucleon) and atomic (proton) number are given for each element in the Periodic Table

Isotopes: Basics

- Isotopes are atoms of the same element that contain the same number of protons and electrons but a different number of neutrons
- The wayto represent an isotope is to write the chemical symbol(orthe word) followed by a dash and then the mass number
- E.g. carbon-12 and carbon-14 are isotopes of carbon containing 6 and 8 neutrons respectively
- These isotopes could also be written as ${ }^{12} \mathrm{C}$ or $\mathrm{C}-12$, and ${ }^{14} \mathrm{C}$ or $\mathrm{C}-14$ respectively

© 2024 Exan Papers Practice

The atomic structure and symbols of the three isotopes of hydrogen

Determining the Subatomic Structure of Atoms \& lons

- An atom is neutral and has no overall charge
- lons on the otherhand have either gained orlost electrons causing them to become charged
- The number of subatomic particles in atoms and ions can be determined given their atomic (proton) number, mass (nucleon) number and charge

Protons

- The atomic number of an atom and ion determines which element it is
- Therefore, all atoms and ions of the same element have the same number of protons (atomic number) in the nucleus
- E.g. lithium has an atomic number of 3 (three protons) whereas beryllium has atomic number of 4 (4 protons)
- The number of protons equals the atomic (proton) number
- The number of protons of an unkno wnelement can be calculated by using its mass number and number of neutrons:

Mass number = number of protons + number of neutrons
Number of protons $=$ mass number - number of neutrons

Worked example

Determine the number of protons of the following ions and atoms:

1. $\mathrm{Mg}^{2+i o n}$
2. Carbon atom
3. An unkno wn atom of element X with mass number 63 and 34 neutrons

Answer:

Answer 1:The atomic number of a magnesium atom is 12 suggesting that the number of protons in the magnesium element is 12

- Therefore the number of protons in a $\mathbf{M g}^{\mathbf{2 +}}$ ion is also 12 - the number of protons does not change when anion is formed

Answer 2: The atomic number of a carbo n atom is 6 suggesting that a carbonatom has 6 protons inits nucleus

Answer 3: Use the formula to calculate the number of protons

Number of protons $=$ mass number - number of neutrons
 Number of protons = 63-34
 Number of protons $=29$

- Element Xis therefore copper

Electrons

- An atom is neutral and therefore has the same number of protons and electrons
- Ions have a different number of electrons to the number of protons, depending on their charge
- A positively charged ion has lost electrons and therefore has fewer electrons than protons
- A negatively charged ion has gained electrons and therefore has more electrons than protons

Worked example

Determine the number of electrons of the following ions and atoms:

1. $\mathrm{Mg}^{2+i o n}$
2. Carbon atom
3. An unkno wn ato m of element X with mass number 63 and 34 neutrons

Answer:

Answer 1:The atomic number of a magnesium atom is 12 suggesting that the number of protons in the neutral magnesium atom is 12

- However, the $2+$ charge in Mg^{2+} ion suggests it has lost two electrons
- It only has 10 electrons left now

Answer 2: The atomic number of a carbon atom is 6 suggesting that the neutral carbon atom has 6 electrons orbiting around the nucleus

Answer 3: The number of protons of element \mathbf{X} can be calculated by:

Number of protons $=$ mass number - number of neutrons

Number of protons $=63-34$

Number of protons = 29

- The neutral atom of element \mathbf{X} therefore also has 29 electrons

Neutrons

- The mass and ato mic numbers can be used to find the number of neutrons in ions and atoms:

Number of neutrons = mass number (A) - number of protons (Z)

Worked example

Determine the number of neutrons of the following ions and atoms:
l. $\mathrm{Mg}^{2+i o n}$
2. Carbon atom
3. An unknown atom of element X with mass number 63 and 29 protons

Answer:

Answer 1: The atomic number of a magnesium atom is 12 and its mass number is 24
Number of neutrons $=$ mass number (A) - number of protons (Z)
Number of neutrons = 24-12
Number of neutrons $=12$

- The $\mathbf{M g}^{\mathbf{2 +}}$ ionhas 12 neutrons in its nucleus

Answer 2: The atomic number of a carbon atom is 6 and its mass number is 12
Number of neutrons $=$ mass number (A) - number of protons (Z)

Number of neutrons $=$ 12-6

Numberof neutrons $=6$
The carb on atom has 6 neutrons in its nucleus
Answer 3: The atomic number of an element \mathbf{X} atom is 29 and its mass number is 63
Number of neutrons $=$ mass number (A) - number of protons (Z)
Number of neutrons $=63$ - 29
Number of neutrons $=34$

- The neutral atom of element \mathbf{X} has 34 neutrons in its nucleus

2.1.3 Relative Atomic Mass Calculations

Relative Atomic Mass Calculations

- Isotopes are different atoms of the same element that contain the same number of protons and electrons but a different number of neutrons
- These are atoms of the same elements but with different mass numbers
- Because of this, the mass of an element is given as relative atomic mass (A_{r}) by using the average mass of all of the is otopes
- The relative atomic mass of an element can be calculated by using the percentage abundance values
- The percent age abundance of an isotope is either given orcan be read off the mass spectrum
- Firstly, find the mass of 100 atoms by multiplying the percentage abundance bythe mass of eachisotope
- Secondly, divide by 100 to find the average atomic mass
- For example, if you have two isotopes A and B:
total mass of 100 atoms $=\left(\%\right.$ abundance $_{A} \times$ mass $\left._{A}\right)+\left(\%\right.$ abundance $_{B} \times$ mass $\left._{B}\right)$

$$
\text { mass of } 1 \text { atom }=\frac{\text { total mass }}{100}
$$

Exam Papers Practice
Copyright
© 2024 Exam Papers Practice

Exam Papers Practice

Worked example

A sample of oxygen contains the following is o topes

Isotope	Percentage abundance
${ }^{16} \mathrm{O}$	99.76
${ }^{17} \mathrm{O}$	0.04
${ }^{18} \mathrm{O}$	0.20

What is the relative atomic mass of oxygen to 2 dp ?
A 16.00

B 17.18

C 16.09

D 17.00

Answer:

The correct answer is \mathbf{A}

- Total mass of 100 atoms $=(99.76 \times 16)+(0.04 \times 17)+(0.20 \times 18)=1600.44$
- Mass of 1 ato $m=1600.44 \div 100=16.0044=16.00(2 \mathrm{dp})$
- Here is ano ther example, but this time using a mass spectrum to obtain the information:

Worked example

Calculate the relative atomic mass of boron using its mass spectrum, to 2 dp :

Exam Papers Practice

Answer:

- Total mass of 100 atoms $=(19.9 \times 10)+(80.1 \times 11)=1080.1$
- Mass of 1 atom $=1080.1 \div 100=10.801=10.80(2 \mathrm{dp})$

2.1.4 The Electromagnetic Spectrum

The Electromagnetic Spectrum

- The electromagnetic spectrum is a range of frequencies that covers all electromagnetic radiation and their respective wavelengths and energy
- It is divided into bands or regions, and is very important in analytic al chemistry
- The spectrum shows the relationship between frequency, wavelength and energy
- Frequency is how manywaves pass persecond, and wavelength is the distance between two consecutive peaks on the wave
- Gammarays, X-rays and UVradiation are all dangero us - you can see from that end of the spectrum that it is high frequencyand high energy, which can be very damaging to your health

THE ELECTROMAGNETIC SPECTRUM

- All light waves travel at the same speed; what distinguishes them is their different frequencies
- The speed of light (symbol ' c ') is constant and has a value of $3.00 \times 10^{8} \mathrm{~ms}^{-1}$
- As you can see from the spectrum, frequency (symbol' v ') is inversely proportional to wavelength (symbol' λ ')
- In otherwords, the higher the frequency, the shorter the wavelength
- The equation that links them is $\mathbf{c}=\boldsymbol{v} \boldsymbol{\lambda}$
- Since constant you can use the formula to calculate the frequency of radiation given the wavelength, and vice versa

Continuous versusline spectrum

- A continuous spectrum in the visible region contains all the colours of the spectrum
- This is what you are seeing in a rainbow, which is formed by the refraction of white light through a prismorwaterdroplets in rain
- However, aline spectrum only shows certain frequencies

The line spectrum of helium which shows only certain frequencies of light

- This tells us that the emitted light from atoms can only be certain fixed frequencies -it is quantised (quanta means 'little packet')

Copyright

- Electrons canonly possess certain amounts of energy - they cannot have anyenergy value

- Exam Tip

The formula that relates frequency and wavelength is printed in Section lof the IB Chemistry Data Booklet so you don't need to learn itYou will also find the speed of light and other useful constants in Section 2

2.1. 5 Emission Spectra

Emission Spectra

- Electrons move rapidly aro und the nucleus in energy shells
- If their energy is increased, then theycan jump to a higher energylevel
- The process is reversible, so electrons can return to theiro riginal energy levels
- When this happens, theyemit energy
- The frequency of energy is exactlythe same, it is just being emitted rather than absorbed:

The difference between absorption and emission depends on whether electrons are jumping from lower to higher energy levels or the other way around

- The energy they emit is a mixture of different frequencies
- This is thought to correspond to the many possibilities of electronjumps between energy shells
- If the emitted energy is in the visible region, it can be analys ed by passing it through a diffraction grating
- The result is a line emission spectrum

Line emission spectra

The line emission (visible) spectrum of hydrogen

- Each line is a specific energyvalue
- This suggests that electrons can only possess a limited choice of allowed energies
- These packets of energy are called 'quanta' (plural quantum)
- What you should notice about this spectrum is that the lines get closertogether towards the blue end of the spectrum
- This is called convergence and the set of lines is converging to wards the higherenergy end, so the electron is reaching a maximum amount of energy
- This maximum corresponds to the ionisationenergy of the electron
- These lines were first observed by the Swiss schoolteacher Johannes Balmer, and they are named after him
- We now know that these lines correspond to the electronjumping from higher levels down to the second orn=2 energylevel

The Hydrogen Spectrum

- A larger version of the hydro gen spectrum from the infrared to the ultraviolet region looks like this

The full hydrogen spectrum

- In the spectrum, we can see sets orfamilies of lines
- Balmer could not explain whythe lines were formed - an explanation had to wait until the arrival of Planck's Quantum Theory in 1900
- Niels Bohrapplied the Quantum Theory to electrons in 1913, and proposed that electrons could only exist in fixed energylevels
- The line emission spectrum of hydrogen provided evidence of these energylevels and it was deduced that the families of lines corresponded to electrons jumping from higher levels to lowerlevels

Electronjumps in the hydrogen spectrum

- The findings helped scientists to und erstand how electrons work and provided the backbone to our knowled ge of energy levels, sublevels and orbitals
- The jumps can be summarised as follows:

Electron Jumps \& Energy Table

Jumps	Region	Energy
$n \propto \rightarrow n_{3}$	Infrared	Low
$n \propto \rightarrow n_{2}$	Visible	\downarrow
$n \propto \rightarrow n_{1}$	Ultraviolet	High

Worked example

Which electron transition in the hydrogen atom emits visible light?
A. $n=1$ to $n=2$
B. $n=2$ to $n=3$
C. $n=2$ to $n=1$
D. $n=3$ to $n=2$

Answer:

Option D is correct

- Emis sion in the visible region occurs foran electron jumping from any higher energy level to $\mathbf{n}=$ 2

2.1.6 Energy Levels \& Sublevels

ElectronEnergy Levels

Shells

- The arrangement of electrons in an atom is called the electronic configuration
- Electrons are arranged around the nucleus in principal energy levels orprincipal quantum shells
- Principal quantum numbers (\mathbf{n}) are used to number the energylevels or quantum shells
- The lower the principal quantum number, the closer the shell is to the nucleus
- The higher the principal quantum number, the greater the energy of the electron within that shell
- Each principal quantum number has a fixed number of electrons it can hold
- $n=1$:up to 2 electrons
- $\mathrm{n}=2$:up to 8 electrons
- $\mathrm{n}=3$: up to 18 electrons
- $\mathrm{n}=4$: up to 32 electrons
- There is a pattern here - the mathematical relationship between the number of electrons and the principal energylevel is $2 n^{2}$
- So for example, in the third shell $\mathrm{n}=3$ and the number of electrons is $2 \times\left(3^{2}\right)=18$

Electrons are arranged in principal quantum shells, which are numbered by principal quantum numbers

Subshells

- The principal quantum shells are split into subshells which are given the letters \mathbf{s}, \mathbf{p} and \mathbf{d}
- Elements with more than 57 electrons also have an f subshell
- The energy of the electrons in the subshells increases in the orders $<p<d$
- The order of subshells overlap for the higher principal quantum shells as seen in the diagram below:

Exam Papers Practice

Electrons are arranged in principal quantum shells, which are numbered by principal quantum numbers

Orbitals

- The subshells contain one ormore atomic orbitals
- Orbitals exist at specific energylevels and electrons can only be found at these specific levels, notinbetween
- Each atomic orbital can be occupied by a maximum of two electrons
- The orbitals have specific 3D shapes

a. s ORBITALS

NORMALLY DRAWN AS

b. p ORBITALS

Representation of orbitals (the dot represents the nucleus of the atom) showing spherical sorbitals (a), p Copyright orbitals containing 'lobes'along thex, y and z axis
© 2024 Exam Papers Practice

- Note that the shape of the dorbitals is not required forlB Chemistry

Ground state

- The ground state is the most stable electronic configuration of an atom which has the lo west amount of energy
- This is achieved by filling the subshells of energywith the lowest energy first (ls) - this is called the Aufbau Principle
- The order of the subshells in terms of increasing energy does not follow a regular pattern at $\mathrm{n}=3$ and higher

The Aufbau Principle - following the arrows gives you the filling order

Sublevels \& Energy

- The principal quantum shells increase in energy with increasing principal quantum number
- Eg. $n=4$ is higher in energy than $n=2$
- The subshells increase in energyas follows: $s<p<d<f$
- The only exception to these rules is the $3 d$ orbit al which has slightly higher energy than the 4 s orbital, so the 4 s orbital is filled before the 3 d orbital
- All the orbitals in the same subshell have the same energy and are said to be degenerate
- Eg. p_{x}, p_{y} and p_{z} are all equal in energy

Relative energies of the shells and subshells

2.1.7 Sublevels \& Orbitals

Electron Orbitals

- Each shell can be divided furtherinto subshells, labelled s,p,d and f
- Each subshell can hold a specific number of orbitals:
- s subshell:1orbital
- p subshell:3 orbitals labelled p_{x}, p_{y} and p_{z}
- d subshell:5 orbitals
- fsubshell:7orbitals
- Each orbital can hold a maximum number of 2 electrons so the maximum number of electrons in each subshell are as follows:
- s: $1 \times 2=$ total of 2 electrons
- $p: 3 \times 2=$ total of 6 electrons
- d:5x2=total of 10 electrons
- $f: 7 \times 2=$ total of 14 electrons
- In the ground state, orbitals in the same subshell have the same energy and are said to be degenerate, so the energy of a p_{x} orbital is the same as a p_{y} orbital

Exam Papers Practice
© 2024 Exam Papers Practice

Shells are divided into subshells which are further divided into orbitals

The s \& p Orbitals

sorbitals

- The s orbitals are spherical in shape
- The size of the s orbitals increases with increasing shell number
- E.g. the s orbital of the third quantum shell $(n=3)$ is bigger than the s orbital of the first quantum shell $(n=1)$

The s orbitals become largerwith increasing principal quantum number
porbitals

- The porbitals are dumbbell-shaped
- Every shell has three porbitals except for the first one ($n=1$)
- The p orbitals occupy the x, y and z axes and point at right angles to each other, so are oriented perpendicular to one another
- The lobes of the p orbitals become larger and longer with increasing shell number

Copyright

© 2024 Exam Papers Practice

The p orbitals become larger and longer with increasing principal quantum number

2.1.8 Writing Ele ctron Configurations

Electron Configurations: Basics

- The electron configuration gives information about the number of electrons in each shell, subshell and orbital of an atom
- The subshells are filled in order of increasing energy

The electron configuration shows the number of electrons occupying a subshell in a specific shell

© 2024 Exam Papers Practice

Electron Configurations: Explained

- Electrons can be imagined as small spinning charges which rotate around their own axis in either a clockwise oranticlockwise direction
- The spin of the electron is represented byits direction
- The spin creates a tinymagnetic field with N-S pole pointing up or down

Electrons can spin either in a clockwise or anticlockwise direction around theirown axis

- Electrons with the same spin repeleach other which is also called spin-pair repulsion

Copyright Therefore, electrons will occupyseparate orbitals in the same subshell first to minimise this (c) 2024 Exarepulsion and have their spin in the same direction

- They will then pair up, with a second electron being ad ded to the first porbital, with its spin in the opposite direction
- This is known as Hund's Rule
- E.g. if there are three electrons in a p subshell, one electron will go into each p_{x}, p_{y} and p_{z} orbital

\section*{| 1 | 1 | 1 |
| :--- | :--- | :--- |}

Electron configuration: three electrons in a p subshell

- The principal quantum numberindicates the energylevel of a particular shell but also indicates the energy of the electrons in that shell
- A $2 p$ electron is in the second shell and therefore has an energycorresponding to $n=2$
- Even though there is repulsion between negatively charged electrons, theyoccupy the same region of space in orbitals
- An orbital can only hold two electrons and they must have opposite spin-the is known as the Pauli Exclusion Principle
- This is because the energy required to jump to a higher empty orbital is greater than the interelectron repulsion
- Forthis reason, theypair up and occupy the lowerenergylevels first

Orbital Diagrams

- The electron configuration can also be represented using the orbital spindiagrams
- Eachboxrepresents an atomic orbital
- The boxes are arranged in order of increasing energy from lower to higher (i.e. starting from closest to the nucleus)
- The electrons are represented byopposite arrows to show the spin of the electrons
- E.g. the box notation for titanium is shown below

The electrons in titanium are arranged in theirorbitals as shown. Electrons occupy the lowest energy levels first before filling those with higher energy

Determining Electronic Configurations

- Writing out the electronic configurationtells us how the electrons in an atomorion are arranged in their shells, subshells and orbitals
- This can be done using the full electron configuration or the shorthand version
- The full electron configuration describes the arrangement of all electrons from the 1 s subshellup
- The shorthand electron configuration includes using the symbol of the nearest preceding noble gas to account for however many electrons are in that no ble gas, followed bythe rest of the electronconfiguration
- lons are formed when atoms lose or gain electrons
- Negative ions are formed by ad ding electrons to the outer subshell
- Positive ions are formed by remo ving electrons from the outer subshell
- The transition metals fill the $4 s$ subshell before the $3 d$ subshell, but they also lo se electrons from the $4 s$ first rather than from the $3 d$ subshell
- The Periodic Table is split up into four main blocks depending on their electronic configuration:
- s block elements (valence electron(s) in s orbital)
- pblock elements (valence electron(s) in porbital)
- d block elements (valence electron(s) in d orbital)
- fblock elements (valence electron(s) in forbital)

The elements can be divided into four blocks according to their outer shell electron configuration

Exceptions to the Auf bau Principle

- Chromium and copperhave the following electron configurations:
- Cris [Ar] $3 d^{5} 4 s^{1}$ not $[A r] 3 d^{4} 4 s^{2}$
- Cuis [Ar] $3 d^{10} 4 s^{1}$ not $[A r] 3 d^{9} 4 s^{2}$
- This is because the [Ar] $3 d^{5} 4 s^{1}$ and $[\operatorname{Ar}] 3 d^{10} 4 s^{1}$ configurations are energetically favourable
- Bypromoting an electron from 4s to 3d, these atoms achieve a half full orfulld-subshell, respectively

Worked example

Write down the full and shorthand electron configuration of the following elements:

1. Potassium
2. Calcium
3. Gallium
4. Ca^{2+}

Answer:

Answer 1:

- Potassium has 19 electrons so the full electronic configuration is:

$$
1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{1}
$$

- The $4 s$ orbital is lowerin energy than the $3 d$ subshell and is therefore filled first
- The nearest preceding noble gas to potassium is argon whichaccounts for 18 electrons so the shorthand electron configuration is:

Answer 2:

- Calcium has 20 electrons so the full electronic configuration is:

$$
1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2}
$$

- The 4 s orbital is lowerin energy than the 3 d subshell and is therefore filled first
- The shorthand version is [Ar] $4 s^{2}$ since argon is the nearest preceding noble gas to calcium which accounts for 18 electrons

Answer 3:

- Gallium has 31 electrons so the fullelectronic configuration is:

E, 旦
 Exam Papers Practice

$$
[\mathrm{Ar}] 3 d^{10} 4 s^{2} 4 p^{1}
$$

Answer 4:

- If youionise calcium and remove two of its outerelectrons, the electronic configuration of the Ca^{2+} ion is identical to that of argon:

$$
\begin{aligned}
& \mathrm{Ca}^{2+} \text { is } 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} \\
& \text { Ar is also } 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}
\end{aligned}
$$

(9) Exam Tip

Orbital spin diagrams can be drawn ho rizontally orvertically, going up ordown the page - there is no hard and fast rule abo ut this. The important thing is that you label the boxes and have the right number of electrons shown. The arrows you use for electrons can be full or half-headed arrows, but they must be in opposite directions in the same box.

Exam Papers Practice
© 2024 Exam Papers Practice

