Please check the examination details belo	ow before ente	ering your candidate information
Candidate surname		Other names
Centre Number Candidate Nu		
Pearson Edexcel Level	1/Lev	el 2 GCSE (9–1)
Friday 17 May 2024		
Morning (Time: 1 hour 45 minutes)	Paper reference	1CH0/1F
Chemistry		
PAPER 1		
		Foundation Tier
You must have: Calculator, ruler, Periodic Table (enclos	sed)	Total Marks

Instructions

- Use **black** ink or ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Answer the questions in the spaces provided
 - there may be more space than you need.
- Calculators may be used.
- Any diagrams may NOT be accurately drawn, unless otherwise indicated.
- You must show all your working out with your answer clearly identified at the end of your solution.

Information

- The total mark for this paper is 100.
- The marks for each question are shown in brackets
 use this as a guide as to how much time to spend on each question.
- In questions marked with an asterisk (*), marks will be awarded for your ability to
- In questions marked with an **asterisk** (*), marks will be awarded for your ability to structure your answer logically, showing how the points that you make are related or follow on from each other where appropriate.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over ▶

Answer ALL questions. Write your answers in the spaces provided.

Some questions must be answered with a cross in a box \boxtimes . If you change your mind about an answer, put a line through the box \boxtimes and then mark your new answer with a cross \boxtimes .

1 Figure 1 shows a test tube being heated in a beaker of water.

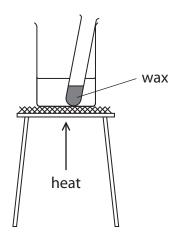


Figure 1

The test tube contains solid wax.

As the test tube was heated, the solid wax changed to liquid wax.

After heating, the wax was allowed to cool to room temperature.

(a) Figure 2 shows the arrangement of particles in liquid wax.

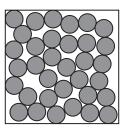


Figure 2

Draw the arrangement of particles in solid wax in the box in Figure 3.

(1)

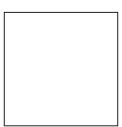


Figure 3

) VVI	nat n	ame is given to the change of a liquid to a solid?	(1)
X	A	condensing	(1)
X	В	evaporating	
×	C	freezing	
×	D	melting	
		nysical change is when a liquid changes into a gas. row shows the movement and arrangement of the particles in a gas?	
		row shows the movement and arrangement of the particles in a gas?	(1)
i) WI	nich i	row shows the movement and arrangement of the particles in a gas? movement of particles arrangement of particles	(1)
	nich i	row shows the movement and arrangement of the particles in a gas? movement of particles arrangement of particles slow regular	(1)
i) WI	A B	movement of particles arrangement of particles in a gas? slow regular slow random	(1)
) WI	nich i	row shows the movement and arrangement of the particles in a gas? movement of particles arrangement of particles slow regular	(1)
i) WI	A B C D	movement of particles arrangement of the particles in a gas? movement of particles arrangement of particles slow regular slow random fast regular	(1)

2 (a) Nitrogen reacts with hydrogen to form ammonia.

The reaction is reversible.

(i) Complete the word equation for the reaction by adding the **symbol** to show that the reaction is reversible.

(1)

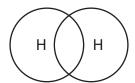

(ii) Figure 4 shows the electronic configuration of an atom of hydrogen.

Figure 4

Complete the dot and cross diagram for a molecule of hydrogen, H₂.

(1)

(i) Wı	rite t	reacts with sulfuric acid to form ammonium sulfate. he word equation for this reaction. →	(2)
(ii) Ar	nmo	nium sulfate contains ammonium ions, NH_4^+ , and sulfate ions, SO_4^{2-} . s the formula of ammonium sulfate?	(1)
\boxtimes		NHSO	
\boxtimes		NH_4SO_4 $(NH_4)_2SO_4$	
\boxtimes		$NH_4(SO_4)_2$	
(iii) Ex	plair	n why some farmers spread ammonium sulfate on their fields.	(2)
		(Total for Question 2 = 7 n	narks)

. ,	and sedimen	tation.	cesses of chlorination , filtration	
	Place these p	rocesses in the order	r that they take place during water treatment.	(2)
	fi	rst	last	
(b)		ter contains chloride	ions. how a chlorine atom, Cl, forms a	
	chloride id			(2)
	·		er during water treatment?	(1)
		to clean the water		(1)
	□ A□ B	to clean the water to dissolve insoluble	e substances in the water	(1)
	□ A□ B□ C	to clean the water to dissolve insoluble to increase the pH o	e substances in the water of the water to 11	(1)
	□ A□ B□ C	to clean the water to dissolve insoluble	e substances in the water of the water to 11	(1)
	ABCD	to clean the water to dissolve insoluble to increase the pH o to kill any bacteria in	e substances in the water of the water to 11	(1)

(c) A student was asked to distil a sample of tap water. Figure 5 shows the apparatus the student used.

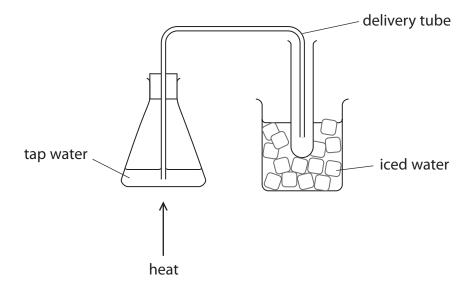


Figure 5

(i) The student made an error when setting up the apparatus in Figure 5.

This error meant that pure water could **not** be collected in the test tube.

Explain what the student needs to change so that pure water can be collected in the test tube.

(2)

(ii) State what the student should use to heat the water.

(1)

(Total for Question 3 = 9 marks)

4 A student was asked to find the volume of lithium hydroxide solution that would react exactly with 25.0 cm³ of dilute hydrochloric acid.

The student used the equipment in Figure 6 to carry out a rough titration and then a further three accurate titrations.

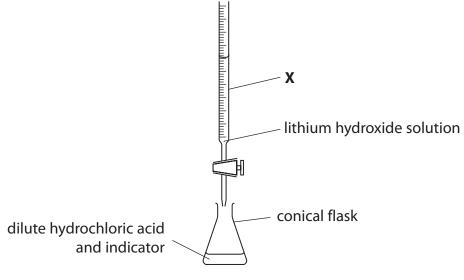


Figure 6

(a) (i) Which is the name of the piece of equipment labelled **X** in Figure 6?

(1)

- A boiling tube
- **B** burette
- **C** funnel
- **D** measuring cylinder
- (ii) Describe how the student should measure the 25.0 cm³ of dilute hydrochloric acid accurately into the conical flask.

(2)

8

(b) Figure 7 shows the results of the student's titrations.

	rough titration	accurate titration 1	accurate titration 2	accurate titration 3
final reading on X in cm ³	29.15	28.20	27.30	27.60
initial reading on X in cm ³	1.50	3.50	2.50	3.00
volume of lithium hydroxide solution added in cm ³		24.70	24.80	24.60

			Figure 7		
	(i)		ulate the volume of lithium hydroxide solution added in the		
		rou	gh titration.	(1)	
			volume of lithium hydroxide solution =		cm³
	(ii)		ulate the mean volume of lithium hydroxide solution used in the		
		accı	urate titrations.	(2)	
			mean volume of lithium hydroxide solution =		cm³
(c)			orange indicator was added to dilute hydrochloric acid in the conical flask tration.		
			blour change would be seen in the conical flask at the end point of tion?		
	×	Α	blue to green	(1)	
	X	В	colourless to black		
	X	C	red to orange		
	X	D	white to pink		

(d)	During the titration, lithium hydroxide solution, LiOH, reacts with
	dilute hydrochloric acid, HCl, to form lithium chloride, LiCl, and water

(i) Write the balanced equation for the reaction.

(2)

(ii) State the name of this type of reaction.

(1)

(Total for Question 4 = 10 marks)

5 (a) Figure 8 shows some information about an atom of chlorine.

Figure 8

State the number of protons, neutrons and electrons in this atom.

(3)

number of protons =

number of neutrons =

number of electrons =

(b) Chlorine reacts with silicon to form silicon chloride.

A sample of silicon chloride contains 1.4 g of silicon atoms and 7.1 g of chlorine atoms.

Calculate the empirical formula of this sample of silicon chloride.

(relative atomic masses: Si = 28, Cl = 35.5)

(3)

empirical formula =

(c) The modern periodic table is organised into groups and periods.

State in which group and in which period of the periodic table silicon is found.

You should use the periodic table to help you answer this question.

(2)

group =

period =

(d)	Describe two differences between Mendeleev's periodic table and the modern periodic table.	
	periodic table.	(2)
1		
a		
2		
	(Total for Question 5 = 10 ma	

(a) A 250 cm ³ solution of copper sulfate contains 6.52 g of dissolved solid.	
Calculate the concentration of this copper sulfate solution in g dm ⁻³ .	
concentration $(g dm^{-3}) = \frac{mass of solid (g)}{volume of solution (dm^3)}$	(2)
concentration =	g dm ⁻³
(b) Sodium hydroxide solution and copper sulfate solution were reacted together completely.	
The result was a mixture of a precipitate of copper hydroxide in a solution of sodium sulfate.	
Describe how to obtain	
a pure sample of solid copper hydroxide from the mixture	
a pure sample of solid sodium sulfate from the mixture.	(4)
	Calculate the concentration of this copper sulfate solution in g dm ⁻³ . concentration (g dm ⁻³) = \frac{mass of solid (g)}{volume of solution (dm ³)} concentration =

(c) Figure 9 shows the equipment used to electrolyse a sample of sodium sulfate solution.

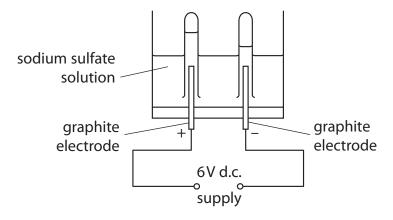


Figure 9

Graphite electrodes are used in the electrolysis.

(i) Give **two** reasons why graphite is a suitable material for the electrodes.

(2)

1

2

(ii) Sodium sulfate solution contains ions.

Which ions are attracted to the positive electrode during the electrolysis?

(1)

- A H⁺ ions only
- B OH⁻ ions only
- SO₄ 2- and OH⁻ ions

(iii) Draw **one** straight line from each electrode to the product formed at that electrode during the electrolysis of sodium sulfate solution.

electrode product
hydrogen

anode hydroxide

cathode oxygen

sodium

(Total for Question 6 = 11 marks)

(2)

- 7 (a) A student investigated the rusting of iron rods using the following method.
 - **step 1** find the mass of two identical iron rods
 - **step 2** wrap magnesium ribbon around one of the iron rods
 - step 3 place each rod in separate boiling tubes containing 10 cm³ of water
 - **step 4** leave the iron rods for one week
 - **step 5** find the new mass of the iron rods.

Figure 10 shows the apparatus used.

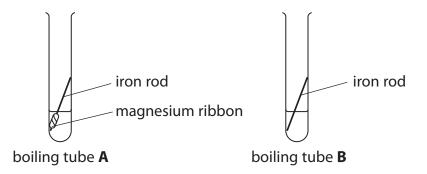


Figure 10

Figure 11 shows the results of the investigation.

	initial mass of iron rod in g	final mass of iron rod in g	change in mass in g
boiling tube A	7.00	7.00	0.00
boiling tube B	7.00	7.56	

Figure 11

(i) Use the results in Figure 11 to calculate the percentage increase in the mass of the iron rod in boiling tube **B**.

% increase =
$$\frac{\text{change in mass}}{\text{initial mass}} \times 100$$

(3)

percentage increase in mass of iron rod =

(ii) Wł	nich	gas from the air has reacted with the iron rod in boiling tube B ?	(1)
\times	A	argon	
\boxtimes	В	carbon dioxide	
\times	C	nitrogen	
×	D	oxygen	
(iii) Th	e iro	n rod did not rust in boiling tube A .	
Exį	olair	n why.	(2)

*(b) Figure 12 shows some uses of copper metal.

© Michael Kraus/Shutterstock

© SimoneN/Shutterstock

© vldkont/Shutterstock

© karen roach/Shutterstock

(6)

Figure 12

Describe how the properties of copper metal make it a suitable material for the uses shown.

Your answer should include

- uses of copper metal shown in the photographs
- properties of copper metal including:
 - chemical reactivity
 - electrical conductivity
 - malleability
 - thermal conductivity

(- /

- **8** Barium hydroxide reacts with dilute hydrochloric acid to form barium chloride solution and water.
 - (a) (i) Complete the balanced equation for the reaction by adding a **number** in front of HCl(aq).

(1)

$$Ba(OH)_2(s) + \dots HCl(aq) \rightarrow BaCl_2(aq) + 2H_2O(l)$$

(ii) State what you would **see** during the reaction.

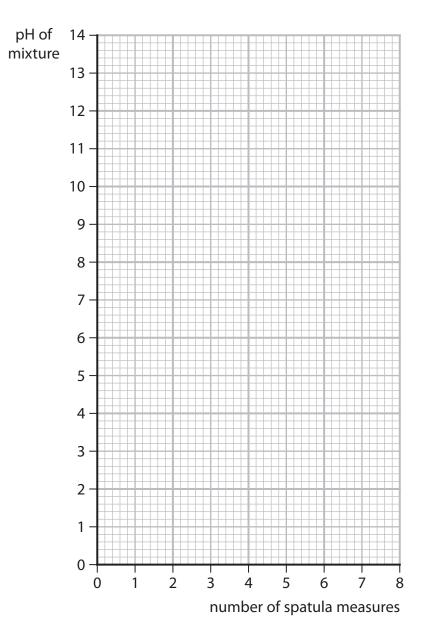
(1)

(b) A student investigated how the pH of the mixture changed as barium hydroxide was added to dilute hydrochloric acid.

The student used this method.

- **step 1** measure out 50 cm³ of dilute hydrochloric acid into a beaker using a measuring cylinder
- **step 2** use a glass rod to place a drop of the acid onto a piece of universal indicator paper and record the pH
- **step 3** add one spatula measure of barium hydroxide to the acid in the beaker and stir
- **step 4** use the glass rod to place a drop of the mixture onto a new piece of universal indicator paper and record the pH again
- **step 5** repeat steps 3 and 4 until there is no further change in the pH.

 (i)	Name a piece of equipment that could be used to measure the pH of a substance more accurately than universal indicator paper.	(1)
(ii)	Explain why, in step 3, the mixture was stirred after adding the barium hydroxide.	(2)


(iii) Figure 13 shows the student's results.

number of spatula measures of barium hydroxide	pH of mixture
0	1
1	1
2	1
3	1
4	3
5	8
6	12
7	13
8	13

Figure 13

Plot a graph of the pH of the mixture against the number of spatula measures of barium hydroxide.

(3)

(iv) Use the graph to find the pH of the mixture when 4.5 spatula measures of barium hydroxide are added.

(1)

pH of the mixture =

(c) Figure 14 shows a hazard symbol on the container of barium hydroxide.

Figure 14

What is the meaning of the hazard symbol in Figure 14?

(1)

- A corrosive
- **B** health hazard
- D toxic
- (d) The barium hydroxide was measured in spatulas.

State **one** way that the measuring of the barium hydroxide could be improved.

(1)

(Total for Question 8 = 11 marks)

- **9** Sodium carbonate has the formula Na₂CO₃.
 - (a) Sodium carbonate contains $\mathrm{Na^{\scriptscriptstyle +}}$ ions and $\mathrm{CO_3^{\ 2-}}$ ions.
 - (i) The atomic number of sodium is 11.

What is the electronic configuration of the Na⁺ ion?

(1)

- **⋈ A** 1
- **■ B** 2.8
- **C** 2.8.1
- **■ D** 2.8.2
- (ii) Explain why solid sodium carbonate **cannot** conduct electricity but a solution of sodium carbonate **can** conduct electricity.

(3)

(b) Calculate the percentage by mass of sodium in sodium carbonate, Na_2CO_3 .

percentage by mass of element = $\frac{\text{total relative atomic mass of element}}{\text{relative formula mass of compound}} \times 100$

(relative atomic masses: C = 12, O = 16, Na = 23)

(3)

percentage by mass of sodium =

(6)

*(c) A student has three solids, A, B and C.

The solids are sodium carbonate, powdered zinc and copper oxide, but the student does not know which solid is which.

The student reacted each solid with dilute sulfuric acid.

Figure 15 shows the student's observations and the results of tests on any gases produced.

	observations and results			
	reaction with dilute sulfuric acid	gas bubbled through limewater	gas tested with a lit splint	
solid A	bubbles seen colourless solution formed	no change	squeaky pop	
solid B	blue solution formed some black solid remains at bottom of test tube	no gas produced	no gas produced	
solid C	bubbles seen colourless solution formed	limewater turned cloudy	puts out lit splint	

Figure 15

Use the observations and results in Figure 15 to identify which solid is which.

Your answer should include

- how each test result helps you to identify the solid
- word equations to support your answer.

- **10** (a) Titanium can be extracted from titanium oxide, TiO₂, by reaction with magnesium.
 - (i) 100 tonnes of titanium oxide was heated with magnesium. The titanium formed in the reaction was separated and purified. The mass of titanium was then determined.

The results are shown in Figure 16.

	mass in tonnes
mass of titanium oxide	100.00
mass of titanium produced	45.26
theoretical mass of titanium formed	60.00

Figure 16

Use the information in Figure 16 to calculate the percentage yield of titanium in this process.

percentage yield =
$$\frac{\text{actual yield}}{\text{theoretical yield}} \times 100$$

	Give your answer to 1 decimal place.	(3)
	percentage yield =(ii) Give two reasons why the percentage yield for this process is less than 100%.	(2)
1		(2)

(iii) The balanced equation for this process is

$$TiO_2 + 2Mg \rightarrow Ti + 2MgO$$

Calculate the atom economy of this process to produce titanium.

total formula mass of desired product atom economy (%) = total formula mass of all reactants or products

Give your answer to 2 significant figures.

(relative atomic masses: O = 16, Mg = 24, Ti = 48)

(3)

atom economy =%

- (b) Ethanol, C₂H₅OH, can be produced by two different methods.
 - by the hydration of ethene, C₂H₄

$$C_2H_4 + H_2O \rightarrow C_2H_5OH$$

atom economy = 100%

• and by the fermentation of a carbohydrate, e.g. sucrose, C₁₂H₂₂O₁₁

$$C_{12}H_{22}O_{11} + H_2O \rightarrow 4C_2H_5OH + 4CO_2$$
 atom economy = 51.1%

(i) State why the hydration of ethene has an atom economy of 100%.

(1)

(ii) Explain how the atom economy of the fermentation reaction can be improved.

(2)

(Total for Question 10 = 11 marks)

TOTAL FOR PAPER = 100 MARKS

Pearson Edexcel Level 1/Level 2 GCSE (9-1)

Friday 17 May 2024

Paper reference

1CH0/1F

Chemistry **PAPER 1**

Foundation Tier

Periodic Table Insert

Do not return this Insert with the question paper.

Turn over ▶

The periodic table of the elements

0	4 He helium 2	20 Ne neon 10	40 Ar argon 18	84 Kr krypton 36	131 Xe xenon 54	[222] Rn radon 86
7		19 F fluorine 9	35.5 CI chlorine 17	80 Br bromine 35	127 	[210] At astatine 85
9		16 O oxygen 8	32 S sulfur 16	79 Selenium 34	128 Te tellurium 52	[209] Po Polonium 84
2		14 N nitrogen 7	31 P phosphorus 15	75 As arsenic 33	122 Sb antimony 51	209 Bi bismuth 83
4		12 C carbon 6	28 Si silicon 14	73 Ge germanium 32	119 Sn tin 50	207 Pb lead 82
3		11 B boron 5	27 AI aluminium 13	70 Ga gallium 31	115 In indium 49	204 T thallium 81
	·			65 Zn zirc 30	112 Cd cadmium 48	201 Hg mercury 80
				63.5 Cu copper 29	108 Ag silver 47	197 Au gold 79
				59 Ni nickel 28	106 Pd palladium 46	195 Pt platinum 78
				59 Co cobalt 27	103 Rh rhodium 45	192 Ir iridium 77
	1 Hydrogen			56 Fe iron 26	101 Ru ruthenium 44	190 Os osmium 76
				55 Mn manganese 25	[98] Tc technetium 43	186 Re nenium 75
		mass ɔol ıumber		52 Cr chromium 24	96 Mo molybdenum 42	184 W tungsten 74
	Kev	relative atomic mass atomic symbol name atomic (proton) number		51 V vanadium 23	93 Nb niobium 41	181 Ta tantalum 73
				48 Ti titanium 22	91 Zr zirconium 40	178 Hf hafnium 72
				Sc scandium 21	89 Y yttrium 39	139 La * lanthanum 57
2		9 Be beryllium 4	24 Mg magnesium 12	40 Ca calcium 20	88 Sr strontium 38	137 Ba barium 56
_		7 Li Ilthium 3	23 Na sodium 11	39 potassium 19	85 Rb rubidium 37	133 Cs caesium 55

^{*} The elements with atomic numbers from 58 to 71 are omitted from this part of the periodic table.

The relative atomic masses of copper and chlorine have not been rounded to the nearest whole number.