

19.1 Electrochemical Cells

Mark Schemes

Exam Papers Practice

To be used by all students preparing for DP IB Chemistry HL Students of other boards may also find this useful

1

Δis

The correct answer is **D** because:

· To find the EMF use the formula

$$EMF = E_{reduction} - E_{oxidation}$$

 The Sn loses electrons so it will be the oxidation half equation and the Fe³⁺ the reduction half equation

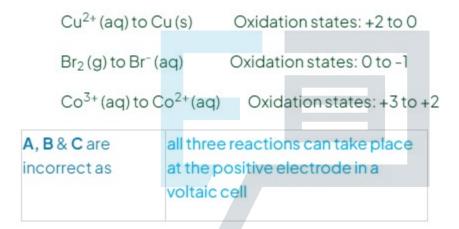
$$EMF = +0.77 - (-0.14) = +0.91 V$$

· Alternatively, you can use

$$EMF = E_{right} - E_{left}$$

· Left is oxidation in voltaic cells

A IS	you get this answer if you switched the
incorrect	oxidation and reduction half cells: EMF =
as	-0.14 - (+0.77) = -0.91 V
Bis	you get this answer if you didn't pay
incorrect	attention to the negative sign in the Sn
as	potential: EMF =+0.77 - (0.14) = +0.63 V
Cis	you get this answer if you attempted to
incorrect	multiply the Fe ³⁺ half cell potential by two:
as	$EMF = (+0.77 \times 2) - (-0.14) = +1.68 \text{ V}$
	Electrode potentials are not molar quantities
	so the coefficients in the equation are
	irrelevant to calculating the EMF


you get this answer if you switched the

2

The correct answer is **D** because:

- The positive electrode is where reduction takes place in a voltaic cell
- Reduction takes place when a species gains electrons and decreases in oxidation state
- By deducing the oxidation state changes, you can tell all three statements involve reduction:

Exam Papers Practice

3

The correct answer is **B** because:

- With inert or passive electrodes such as Pt, copper is produced at the cathode and oxygen at the anode
- · The overall equation for the reaction is:

$$2CuSO_4(aq) + 2H_2O(I) \rightarrow 2Cu(s) + O_2(g) + 2H_2SO_4(aq)$$

 We can see the same quantity of electrical charge produces copper and oxygen in a 2:1 ratio

copper is below hydrogen in the
activity series so it is preferentially discharged, therefore hydrogen will not be a product
the products are correct, but the stoichiometry is wrong for the overall reaction equation

Exam Papers Practice

The correct answer is A because:

- Zinc is less negative than magnesium, so it is a weaker reducing agent and cannot reduce magnesium ions to magnesium metal
- Chloride ions cannot be oxidised to chlorine by zinc powder because the negative electrode potential shows zinc is an effective reducing agent not oxidising agent

B is incorrect	to produce chlorine gas, chloride ions would have to be oxidised which is not
as	possible
C is incorrect as	to produce magnesium metal, magnesium ions would have to be reduced by zinc which is not possible
D is incorrect as	the zinc does not react, so cannot produce zinc chloride

Exam Papers Practice

The correct answer is C because:

- The solutions have the same concentration but a different cation charge, so to solve the problem we have to work out the largest amount of charge passed for the smaller ion charge, i.e. Ag⁺
- The largest amount of charge passed, Q = I x t, is option B, 1.0 x 750 = 750 C
- However, this will give half the number of moles of copper because of the 2:1 ratio of electrons to copper atoms:

$$Cu^{2+}(aq) + 2e^- \rightarrow Cu(s)$$

• The next largest charge is C and D, which both come to 500 C

$$2.0 \times 250 = 500 C$$

$$1.0 \times 500 = 500 C$$

 However, more silver than copper will be formed because of the 1:1 ratio of electrons to silver atoms:

$$Ag^{+}(aq) + e^{-} \rightarrow Ag(s)$$

A is incorrect as	there is only 1.5 x 250 = 375 C of charge passed
B is incorrect as	there is a large charge passed, 750 C But, due to the 2:1 ratio of electrons to copper atoms, this will only produce the equivalent of 375 C 'worth' of copper atoms
Dis	there is 500 C of charge passed
incorrect as	But, due to the 2:1 ratio of electrons to copper atoms, this will only produce the equivalent of 250 C 'worth' of copper atoms