

18.2 Calculations Involving Acids & Bases Question Paper

Exam Papers Practice

To be used by all students preparing for DP IB Chemistry HL Students of other boards may also find this useful

Question 1

The table shows the pK_a and K_a values for four acids

Acid	pK _a	Ka
Butanoic Acid	-	1.51×10 ⁻⁵
Nitrous acid	3.1	-
Lacticacid	3.4	_
Phenol	-	1 x 10 ⁻¹⁰

Which of the following is the correct order of increasing strength of the acids

- A. Phenol < butanoic acid < lactic acid < nitrous acid
- B. Nitrous acid < lactic acid < butanoic acid < phenol
- C. Nitrous acid < butanoic acid < phenol < lactic acid
- D. Phenol < lactic acid < butanoic acid < nitrous acid

[1 mark]

Question 2

Which of the following statements is correct?

- A. As temperature increases, the pH value of pure water decreases
- B. As temperature decreases, the pH value of pure water decreases
- C. The pH of water is unaffected by temperature
- D. Pure water is not neutral

[1 mark]

Practice

Question 3

Which of the following statements about conjugate acid and base pairs are correct?

I. If an acid has a pK_a value of 4, its conjugate base will have a pK_b value of 10 Π. $K_{a} + K_{b} = K_{w}$ 111. The conjugate base for ethanoic acid is CH₃COO⁻

- A. I and II only
- B. I and III only
- C. II and III only
- D.I.II and III

[1mark]

[1mark]

Question 4

What is the correct expression to use to determine the pH of butanoic acid with concentration of 0.75 mol dm⁻³?

The K_a of butanoic acid at 298 K is 1.51×10^{-5} mol dm⁻³

- A. $-\log_{10}(1.51 \times 10^{-5} \times 0.75)$
- B. $-\log_{10}\sqrt{(1.51 \times 10^{-5} \times 0.75)}$
- C.-log₁₀0.75
- **Papers Practice** D. $\frac{0.75}{1.51 \times 10^{-5}}$

Question 5

What is the correct expression for the base dissociation constant, K_b , for propylamine?

A.
$$K_{b} = \frac{[CH_{3}CH_{2}CH_{2}NH_{3}^{+}][OH^{-}]}{[CH_{3}CH_{2}CH_{2}NH_{2}]}$$

B. $K_{b} = \frac{[CH_{3}CH_{2}CH_{2}NH_{3}^{+}][H_{2}O]}{[CH_{3}CH_{2}CH_{2}NH_{2}]}$

$$C. K_{b} = \frac{[CH_{3}CH_{2}CH_{2}NH_{3}^{+}][OH^{-}]}{[CH_{3}CH_{2}CH_{2}NH_{2}][H_{2}O]}$$

 $\mathsf{D}.\,K_{\mathsf{b}} = [CH_3CH_2CH_2NH_3^+][OH^-]$

[1 mark]

