Exam Papers Practice

18.2 Calculations Involving Acids \& Bases Question Paper

Course	DP IB Chemistry	
Section	18. Acids \& Bases (HL only)	
Topic	Medium	

To be used by all students preparing for DP IB Chemistry HL Students of other boards may also find this useful

Question 1

The table shows the $\mathrm{p} K_{a}$ and K_{a} values for four acids

Acid	$\mathrm{pK}_{\mathbf{a}}$	$\mathbf{K}_{\mathbf{a}}$
Butanoic Acid	-	1.51×10^{-5}
Nitrous acid	3.1	-
Lactic acid	3.4	-
Phenol	-	1×10^{-10}

Which of the following is the correct order of increasing strength of the acids
A. Phenol < butanoic acid < lactic acid < nitrous acid
B. Nitrous acid < lactic acid < butanoic acid < phenol
C. Nitrous acid < butanoic acid < phenol < lactic acid
D. Phenol < lactic acid < butanoic acid < nitrous acid

Question 2

Which of the following statements is correct?
A. As temperature increases, the pH value of pure water decreases
B. As temperature decreases, the pH value of pure water decreases
C. The pH of water is unaffected by temperature
D. Pure water is not neutral

Question 3

Which of the following statements about conjugate acid and base pairs are correct?
I.

If an acid has a p K_{a} value of 4 , its conjugate base will have a $p K_{b}$ value of 10
II.
$K_{a}+K_{b}=K_{w}$
III.

The conjugate base for ethanoic acid is $\mathrm{CH}_{3} \mathrm{COO}^{-}$
A. I and II only
B. I and III only
C. II and III only
D. I, II and III

Question 4

What is the correct expression to use to determine the pH of butanoic acid with concentration of $0.75 \mathrm{~mol} \mathrm{dm}^{-3}$?
The K_{a} of butanoic acid at 298 K is $1.51 \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}$
A. $-\log _{10}\left(1.51 \times 10^{-5} \times 0.75\right)$
B. $-\log _{10} \sqrt{\left(1.51 \times 10^{-5} \times 0.75\right)}$
C. $-\log _{10} 0.75$
D. $\frac{0.75}{1.51 \times 10^{-5}}$

Question 5

What is the correct expression for the base dissociation constant, K_{b}, for propylamine?
A. $\mathrm{K}_{\mathrm{b}}=\frac{\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{3}{ }^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}\right]}$
B. $\mathrm{K}_{\mathrm{b}}=\frac{\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{3}{ }^{+}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]}{\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}\right]}$
C. $\mathrm{K}_{\mathrm{b}}=\frac{\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{3}{ }^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]}$
D. $\mathrm{K}_{\mathrm{b}}=\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{3}{ }^{+}\right]\left[\mathrm{OH}^{-}\right]$

