

18.2 Calculations Involving Acids & Bases Mark Schemes

Exam Papers Practice

To be used by all students preparing for DP IB Chemistry HL Students of other boards may also find this useful

1

The correct answer is A because:

- The lower the pK_a value the stronger the acid
- The higher the pK_a value the weaker the acid
- We need to convert K_a to p K_a to compare the strength of the acids
- In order to convert K_a to pK_a without a calculator, work on:
 - \circ p $K_a = -\log K_a$

Therefore

- \circ -log $10^{-5} = 5$
- 1.51 x 10⁻⁵ for butanoic acid will be 4.8
- o 1x10⁻¹⁰ for phenol will be 10

B, C & D are	These are not the correct order of
incorrect as	increasing strength of the acids

2

The correct answer is A because:

The ionisation of water is a reversible process and therefore Le

Chatelier's principle applies

endo

$$H_2O(I) \rightleftharpoons H^+(aq) + OH^-(aq)$$
exo

- If the temperature of the water increases, then the equilibrium will move to oppose the change in temperature
 - o Therefore, the forward reaction will be favoured
 - o This produces more hydrogen ions and hydroxide ions
 - o The higher the value for [H+], the lower the pH value

B is incorrect as	a decrease in temperature will increase the pH of water	
C is incorrect as	the pH of water is affected by temperature. An increase in temperature will decrease pH (becomes more acidic) and a decrease in temperature will increase pH (becomes more alkaline)	
D is incorrect as	despite the fact that pH will change with temperature, the concentration of H ⁺ ions and OH ⁻ ion are always equal	

The correct answer is **B** because:

- Statement II is incorrect
- · The correct relationship is

$$\circ$$
 $K_a \times K_b = K_w$

$$K_W = 1 \times 10^{-14}$$

• $K_a \times K_b = K_w$ • $K_w = 1 \times 10^{-14}$ • $K_b = K_b$ have the relationship ers Practice

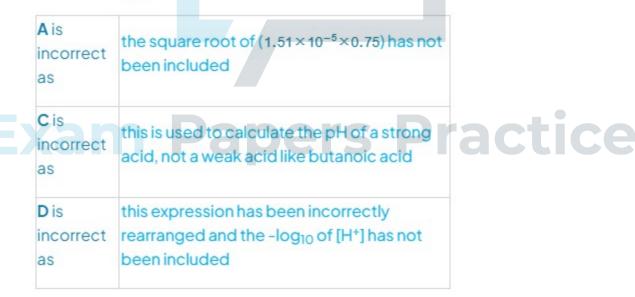
o
$$pK_a + pK_b = pK_w$$

$$o pK_{w} = 14$$

- The conjugate base of ethanoic acid is CH₃COO⁻ (aq) because
 - Ethanoic acid, CH₃COOH, will partially dissociate in water to give:

A, C & D are incorrect as	statement II is incorrect

4


The correct answer is B because:

- · Butanoic acid is a weak acid
- The acid dissociation constant, Ka, expression is

$$\circ \ \ \, K_{\rm a} = \frac{[H^+][C_3 H_7 COO^-]}{[C_3 H_7 COOH]}$$

- To determine [H+]
 - $[H^+]^2 = K_a \times [C_3H_7COOH]$
 - \circ [H⁺]² = 1.51 x 10⁻⁵ x 0.75
 - \circ [H⁺] = $\sqrt{(1.51 \times 10^{-5} \times 0.75)}$
- To determine pH
 - o pH = -log10[H+]
- Therefore

o
$$-\log_{10}\sqrt{(1.51\times10^{-5}\times0.75)}$$

The correct answer is A because:

- For the base dissociation constant, K_b , we use the equation for the dissociation of the weak base, in this case propylamine
 - B(aq) + H₂O(l) ⇒ BH⁺ (aq) + OH⁻ (aq)

 - B(=) = CH₃CH₂CH₂NH₂ (aq)
 BH (aq) = CH₃CH₂CH₂NH₃+ (aq)
- Water is a constant so is not included the expression

B, C & D are these are not the correct expressions for the base dissociation constant, $K_{\rm b}$, incorrect as of propylamine

Exam Papers Practice