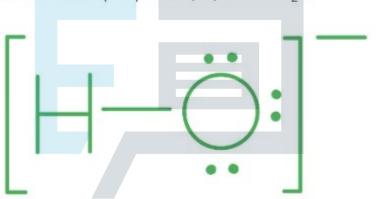


18.1 Further Aspects of Acids & Bases Mark Schemes

Exam Papers Practice


To be used by all students preparing for DP IB Chemistry HL Students of other boards may also find this useful

The correct answer is **D** because:

- Definitions that you must know are:
 - o A Lewis acid is an electron pair acceptor
 - A Lewis base is an electron pair donor
 - A Brønsted-Lowry acid is a proton (H+) donor
 - A Brønsted-Lowry base is a proton (H+) acceptor
- A hydroxide ion can act as a Lewis base and a Brønsted-Lowry base because it can donate a pair of electrons as there are three lone pairs present and it can accept a proton (H+) to form H₂O

The correct answer is **D** because:

- The half equivalence point is the stage of the titration at which exactly half the amount of weak acid has been neutralised
 - [CH₃CH₂COOH (aq)] = [CH₃CH₂COO⁻ (aq)]
 - At this point the pK_a of the acid is equal to the pH
 - o $pK_a = pH$ at half equivalence

A is incorrect as	for a weak acid - strong base titration, the equivalence point will be greater than pH 7 (> pH 7)	
B is incorrect as	the salt formed for a weak acid - strong base titration will be alkaline by hydrolysis because of the CH ₃ CH ₂ COO ⁻ reacts with water to release OH ⁻ ions	
	$CH_3CH_2COO^-(aq) + H_2O(l) \rightarrow$ $CH_3CH_2COOH(aq) + OH^-(aq)$	
C is incorrect as	the salt will be CH ₃ CH ₂ COOK, not CH ₃ COOK This salt is for potassium ethanoate, not potassium propanoate	

3

The correct answer is **D** because:

- Statements I, II and III are correct
- As the pH of a solution changes, the equilibrium of the dissociation of the indicator will shift to the left or right hand side

$$Hln(aq) + H_2O(l) \Rightarrow H_3O^+(aq) + ln^-(aq)$$

 $colour 1 \Rightarrow colour 2$

- If the solution is acidic, the equilibrium will shift to the left hand side and colour 1 will be observed
- If the solution is alkaline, the equilibrium will shift to the right hand side and colour 2 will be observed
- The pH at which these transitions will occur depends on the K_a of the indicator

- The endpoint of the reaction is where [HIn] = [In-]
- At this point these two concentrations are equal and if we take the negative log of both sides
 - pK_a = pH

A, B & C are incorrect as all statements are correct

4

The correct answer is A because:

- A buffer solution is a solution which resists changes in pH when small amounts of acid or base are added
- The statement written in option A does not match this, though it could be easy to confuse them

B, C & D are incorrect as these statements are correct

5

The correct answer is A because:

- Remember: for an indicator the endpoint of the reaction is where [HIn] = [In⁻]
- At this point these two concentrations are equal and if we take the negative log of both sides
 - \circ p $K_a = pH$
- This titration would be an example involving a strong acid (hydrochloric acid) and a weak base (ammonia)
- The equivalence point in this type of titration will be below pH 7.00
- So the best indicator will be methyl orange which changes colour in the range of 3.2-4.4, so with a p K_a value within this range

B is incorrect as	phenolphthalein will change colour when the pH is close to 9.6 which is above pH 7.0	
C is incorrect as	phenol red will change colour when the pH is close to 7.9, which is too high for the strong acid - weak base titration	
D is incorrect as	bromothymol blue changes colour when the pH is close to 7.0 which is still too high for a strong acid - weak base titration	actic