

Exam Papers Practice

Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark schemes
Suitable for all boards
Designed to test your ability and thoroughly prepare you

17.1 The Equilibrium Law

|B Chemistry - Revision Notes
www.exampaperspractice.co.uk

17.1.1 Applying the Equilibrium Law

Explaining Le Châtelier's Principle

Le Châtelier's principle

- Le Châtelier's principle says that if a change is made to a system at dynamic equilibrium, the position of the equilibrium moves to minimise this change
- The principle can be used to predict changes to the position of equilibrium when there are changes in temperature, pressure orconcentration

Explaining Le Châtelier's Principle

- The equilibrium law can explain and quantify the effect of changes in concentration at a particular temperature
- These explanations are based on the idea that K_{c} is not affected by a change in concentration
- Remember that the position of equilibrium is affected by a change in concentration:

Effects of ConcentrationTable

CHANGE	HOW THE EQUILIBRIUM SHIFTS
INCREASE IN CONCENTRATION	EQUILIBRIUM SHIFTS TO THE RIGHT TO REDUCE THE EFFECT OF INCREASE IN THE CONCENTRATION OF A REACTANT
DECREASE IN CONCENTRATION Exam Papers Practice	EQUILIBRIUM SHIFTS TO THE LEFT TO REDUCE THE EFFECT OF A DECREASE IN REACTANT (OR AN INCREASE IN THE CONCENTRATION OF PRODUCT)

- K_{c} for a general reaction such $\mathbf{a A}+\mathrm{bB} \rightleftharpoons \mathrm{c} \mathrm{C}+\mathrm{dD}$ is:

$$
K_{c}=\frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}}
$$

[A] AND [B] = EQUILIBRIUM REACTANT CONCENTRATIONS (mol dm ${ }^{-3}$)
[C] AND [D] = EQUILIBRIUM PRODUCT CONCENTRATIONS (mol dm³)
a, b, c AND $d=$ NUMBER OF MOLES OF REACTANTS AND PRODUCTS

Equilibrium expression linking the equilibrium concentration of reactants and products at equilibrium

- If the concentration of Aincreases
- The position of equilibrium shifts to the right as the forward reactionworks to remove excess A
- The concentrations of C and Dincrease to minimise this change
- The concentration of B decreases because it is being used up to minimise the change
- Therefore, the value of K_{c} remains unchanged
- If the concentration of Adecreases
- The position of equilibrium shifts to the left as the backward reaction works to replace A
- The concentrations of C and Ddecrease to minimise this change
- The concentration of B increases because it is also being pro duced when C and D react
- Therefore, the value of K_{c} remains unchanged
- The HaberProcess is represented bythe following chemical equation:

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

- An increase in the amo unt of nitro gen will cause the following:
- The equilibrium to shift to the right
- An increase in the amount of ammonia
- Adecrease in the amount of hydrogen
- K_{c} will remain unchanged

Exan papright
© 2024 Exam Papers Practice

Graph showing the effects of adding nitrogen on the concentration of reactants and products in the HaberProcess

- An increase in the amo unt of nitrogencauses the rate of the forward reaction to increase
- This means that more ammonia is produced, causing the rate of the backward reaction to increase
- This process of increasing forward and backward reactions continues until a new equilibrium is established
- The rate at this newly established equilibrium will be higher than the original rate

Graph showing the effects of adding nitrogen on the rate of reaction in the Haber Process

- Similar points about concentrations and rates can be made forthe addition of hydrogen or the removal of ammonia
- Regardless, the value of K_{c} remains unchanged
- Only changes in temperature affect K_{c}

Exam Papers Practice
© 2024 Exam Papers Practice

Equilibrium Problems

Calculations involving K_{c}

- In the equilibrium expression, each terminside a square bracket represents the concentration of that chemical in $\mathrm{moldm} \mathrm{m}^{-3}$
- Therefore, the units of K_{c} depend on the equilibrium expression
- Some questions give the number of moles of each of the reactants and products at equilibrium to gether with the volume of the reaction mixture
- The concentrations of the reactants and products can then be calculated from the number of moles and total volume

Worked example

Calculating K_{c} of ethano ic acid

Ethano ic acid and ethanol react to form the ester ethyl ethano ate and water as follows:

$$
\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{I})+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{I}) \rightleftharpoons \mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}(\mathrm{I})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})
$$

At equilibrium, $500 \mathrm{~cm}^{3}$ of the reaction mixture contained 0.235 mol of ethano ic acid and 0.035 mol of ethanol to gether with 0.182 mol of ethyl ethano ate and 0.182 mol of water.

Use this data to calculate a value of K_{c} for this reaction.

Answer:
Step 1: Calculate the concentrations of the reactants and products:

$\left[\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{I})\right]$	$=\frac{0.235}{0.500}$	$=0.470 \mathrm{~mol} \mathrm{dm}^{-3}$
$\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{I})\right]$	$=\frac{0.035}{0.500}$	$=0.070 \mathrm{~mol} \mathrm{dm}^{-3}$
$\left[\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}(\mathrm{I})\right]$	$=\frac{0.182}{0.500}$	$=0.364 \mathrm{~mol} \mathrm{dm}^{-3}$
$\left[\mathrm{H}_{2} \mathrm{O}(\mathrm{I})\right]$	$=\underline{0.182}$	$=0.364 \mathrm{~mol} \mathrm{dm}^{-3}$

"

Step 2: Write out the balanced symbol equation with the concentrations of each chemical underneath:

$$
4
$$

Step 3: Write out the equilibrium constant for the reaction:

$$
K_{c}=\frac{\left[\mathrm{H}_{2} \mathrm{O}\right]\left[\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}\right]}{\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right]\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}
$$

Step 4: Substitute the equilibrium concentrations into the expression and calculate the answer:

$$
K_{c}=\frac{(0.364) x(0.364)}{(0.070) x(0.470)}
$$

© 2024 Exam Papers Practice

$$
=4.03
$$

Step 5: Deduce the correct units for K_{c} :

$$
K_{c}=\frac{\left(\mathrm{mol} \mathrm{dm}^{-3}\right) \times\left(\mathrm{mol} \mathrm{dm}^{-3}\right)}{\left(\mathrm{mol} \mathrm{dm}^{-3}\right) \times\left(\mathrm{mol} \mathrm{dm}^{-3}\right)}
$$

- All units cancel out
- Therefore, $K_{c}=4.03$
- Note that the smallest number of significant figures used in the question is 3 , so the final answer should also be given to 3 significant figures
- Some questions give the initial and equilibrium concentrations of the reactants but not the products
- An initial, change and equilibrium (ICE) table should be used to determine the equilibrium concentration of the products using the molar ratio of reactants and products in the stoichiometric equation

Worked example

Calculating K_{c} of ethyl ethano ate

Ethyl ethano ate is hydrolysed bywater:

$\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}(\mathrm{I})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightleftharpoons \mathrm{CH}_{3} \mathrm{COOH}(\mathrm{I})+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{I})$

0.1000 mol of ethyl ethano ate are ad ded to 0.1000 mol of water. Alittle acid catalyst is ad ded and the mixture made up to $1 \mathrm{dm}^{3}$. At equilibrium 0.0654 mol of water are present. Use this data to calculate a value of K_{c} for this reaction.

Answer:

Step 1: Write out the balanced chemical equation with the concentrations of beneath each substance using an initial, change and equilibrium table:

$\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}(\mathrm{~L})+\mathrm{H}_{2} \mathrm{O}(\mathrm{L}) \rightleftharpoons \mathrm{CH}_{3} \mathrm{COOH}(\mathrm{L})+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{L})$				
Copyright © 2024 Exam Pa Initial moles	0.1000	0.1000	0	0
ChangeChice	-0.0346	-0.0346	+0.0346	+0.0346
Equilibrium moles	0.0654	0.0654	0.0346	0.0346

Step 2: Calculate the concentrations of the reactants and products:

$\left[\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}(\mathrm{I})\right]$	$=\frac{0.0654}{1.000}$	$=0.0654 \mathrm{~mol} \mathrm{dm}^{-3}$
$\left[\mathrm{H}_{2} \mathrm{O}(\mathrm{I})\right]$	$=\frac{0.0654}{1.000}$	$=0.0654 \mathrm{~mol} \mathrm{dm}^{-3}$
$\left[\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{I})\right]$	$=\frac{0.0346}{1.000}$	$=0.0346 \mathrm{~mol} \mathrm{dm}^{-3}$
$\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{I})\right]$	$=\frac{0.0346}{1.000}$	$=0.0346 \mathrm{~mol} \mathrm{dm}^{-3}$

Step 3: Write the equilibrium constant for this reaction in terms of concentration:

$$
K_{c}=\frac{\left.\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right]\left[\mathrm{CH}_{3} \mathrm{COOH}\right]\right]}{\left[\mathrm{H}_{2} \mathrm{O}\right]\left[\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}\right]}
$$

Step 4: Substitute the equilibrium concentrations into the expression:

$$
\begin{gathered}
K_{c}=\frac{(0.0346) x(0.0346)}{(0.0654) x(0.0654)} \\
=0.28
\end{gathered}
$$

Step 5: Deduce the correct units for K_{c} :

$$
\left.K_{c}=\frac{(\mathrm{mol} \mathrm{dm}}{}{ }^{-3}\right) x\left(\mathrm{~mol} \mathrm{dm}^{-3}\right),\left(\mathrm{mol} \mathrm{dm}^{-3}\right) x\left(\mathrm{~mol} \mathrm{dm}^{-3}\right),
$$

- Allunits cancelout
- Therefore, $K_{c}=0.28$

17.1.2 Gibbs Free Energy \& the Equillbrium Constant

Gibbs Free Energy \& the Equilibrium Constant

Gibbs Free Energy \& the Equilibrium Constant

- The equilibrium constant, K_{c}, gives no information about the individual rates of reaction
- It is independent of the kinetics of the reaction
- The equilibrium constant, K_{C}, is directly related to the Gibbs free energy change, ΔG^{\equiv}, according to the following (van't Hoff's) equation:

$$
\Delta G^{\equiv}=-R T \ln K
$$

- $\Delta G^{\equiv}=$ Gibbs free energy change ($\mathrm{kJ} \mathrm{mol}^{-1}$)
- $R=$ gas constant $\left(8.31 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right)$
- T =temperature (Kelvin, K)
- K=equilibrium constant
- This equation is provided insection lof the data booklet

- Exam Tip

When completing calculations using the $\Delta G^{\equiv}=-R T \ln K$ equation, you have to be aware that:

- ΔG^{\equiv} is measure in $\mathbf{k J ~ m o l}{ }^{-1}$
- R is measured in $\mathrm{JK}^{-1} \mathrm{~mol}^{-1}$

This means that one of these values will need adjusting by a factor of 1000

- This relationship between the equilibrium constant, K_{c}, and Gibbs free energy change, ΔG^{\equiv}, can be used to determine whether the forward or backward reaction is favoured

Equilibrium constant, κ	Description	Gibbs free energy change, ΔG
$\kappa>1$	Products favoured	$\Delta G<0 \quad$ (negative)
$\kappa=1$	Reaction at equilibrium Neither reactants nor products are favoured	$\Delta G=0$
$\kappa<1$	Reactants tavoured	$\Delta G>0 \quad$ (positive)

The relationship between the equilibrium constant, K_{c}, and Gibbs free energy change, $\Delta \mathbf{G}^{\equiv}$

- At a given temperature, a negative ΔG value for a reaction indicates that:
- The reaction is feasible / spontaneous
- The equilibrium concentration of the products is greater than the equilibrium concentration of the reactants
- The value of the equilibrium constant is greaterthan 1
- As Δ Gbecomes more negative:
- The forward reaction is favo ured more
- The value of the equilibrium constant increases

Exam Papers Practice
© 2024 Exam Papers Practice

Page 10 of 12

Free Energy \& Equilibrium Calculations

- The relationship between Gibbs free energy change, ΔG^{\equiv}, temperature and the equilibrium constant, K_{c}, is described by the equation:

$$
\Delta G^{\equiv}=-R T \ln K
$$

- The rearrangement of this equation makes it possible to:
- Calculate the equilibrium constant
- Deduce the position of equilibrium for the reaction

$$
\ln K=-\frac{\Delta G}{R T}
$$

Worked example

Calculating $K_{\mathbf{c}}$ Ethanoic acid and ethanol react to form the ester ethyl ethano ate and water as follows:

$$
\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{I})+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{I}) \rightleftharpoons \mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}(\mathrm{I})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})
$$

At $25^{\circ} \mathrm{C}$, the free energy change, ΔG^{\equiv}, for the reaction is $-4.38 \mathrm{~kJ} \mathrm{~mol}^{-1} .\left(R=8.31 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right)$

1. Calculate the value of K_{c} for this reaction
2. Using your answer to part (1), predict and explain the position of the equilibrium

Answers
Answer 1:
Step 1: Convert any necessary values

- $\Delta G^{\bar{\equiv}}$ into Jmol^{-1}.
- $-4.38 \times 1000=-4380 \mathrm{~J} \mathrm{~mol}^{-1}$
- Tinto Kelvin
- $25+273=298 \mathrm{~K}$

Step 2: Write the equation:

- $\Delta G^{\equiv}=-R T \ln K_{c}$

Step 3: Substitute the values:

- $-4380=-8.31 \times 298 \times \ln K_{C}$

Step 4: Rearrange and solve the equation for K_{c} :

- $\ln K_{c}=-4380 \div(-8.31 \times 298)$
- $\ln K_{C}=1.77$
- $K_{c}=e^{1.77}$
- $K_{C}=5.87$

Answer 2:
From part (1), the value of K_{c} is 5.87
Therefore, the equilibrium lies to the right / products side because the value of K_{c} is po sitive

Exam Papers Practice

