Exam Papers Practice

17.1 The Equilibrium Law Question Paper

Course	DP IB Chemistry	
Section	17. Equilibrium(HL only)	
Topic	Medium	

To be used by all students preparing for DP IB Chemistry HL Students of other boards may also find this useful

Question 1

When gaseous dinitrogen pentoxide, $\mathrm{N}_{2} \mathrm{O}_{5}(\mathrm{~g})$, decomposes at 358 K , the following equilibrium is established:

$$
2 \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{~g}) \rightleftharpoons 4 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})
$$

2.0 mol of $\mathrm{N}_{2} \mathrm{O}_{5}(\mathrm{~g})$ were placed in a $1.0 \mathrm{dm}^{3}$ container and allowed to reach equilibrium. At equilibrium 1.0 mol of $\mathrm{N}_{2} \mathrm{O}_{5}(\mathrm{~g})$ were present. What is the value of K_{c} ?
A. 0.125
B. 1
C. 2
D. 8

Question 2

Consider the following reversible reaction:

$$
3 \mathrm{O}_{2}(\mathrm{~g})=2 \mathrm{O}_{3}(\mathrm{~g})
$$

What is the value of K_{c} when the equilibrium concentrations are $\left[\mathrm{O}_{2}\right]=4.0 \mathrm{~mol} \mathrm{dm}^{-3}$ and $\left[\mathrm{O}_{3}\right]=4.0 \mathrm{~mol} \mathrm{dm}^{-3}$?
A. 0.25
B. 4

C. 16
D. 64

Question 3

Which if the following will shift the position of equilibrium to the right in the reaction shown?

$$
2 \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{~g}) \rightleftharpoons 4 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \quad \Delta H=+219.2 \mathrm{~kJ}
$$

I. Decreasing the concentration of $\mathrm{NO}_{2}(\mathrm{~g})$
II. Decreasing the temperature
III. Decreasing the pressure
A. I and II only
B. I and III only
C. II and III only
D. I, II and III
[1 mark]

Question 4

Hydrogen iodide decomposes to form hydrogen and iodine vapour.

$$
2 \mathrm{HI}(\mathrm{~g}) \rightleftharpoons \mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g})
$$

What is the effect of decreasing the volume of the equilibrium mixture at constant temperature?
A. The amount of $\mathrm{H}_{2}(\mathrm{~g})$ remains the same but its concentration decreases
B. The forward reaction is favoured
C. The backward reaction is favoured
D. The value of K_{c} remains unchanged

Question 5

A mixture of 0.40 mol of $\mathrm{SO}_{2}(\mathrm{~g})$ and $0.40 \mathrm{~mol}^{2} \mathrm{O}_{2}(\mathrm{~g})$ was placed in a $1 \mathrm{dm}^{3}$ container. The following equilibrium took place:

$$
2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})=2 \mathrm{SO}_{3}(\mathrm{~g})
$$

At equilibrium the mixture contained 0.25 mol of $\mathrm{O}_{2}(\mathrm{~g})$. How many moles of $\mathrm{SO}_{2}(\mathrm{~g})$ and $\mathrm{SO}_{3}(\mathrm{~g})$ were present at equilibrium?

	$\mathbf{S O}_{\mathbf{2}} \mathbf{(g)} / \mathrm{mol}$	$\mathbf{S O}_{\mathbf{3}} \mathbf{(g)} / \mathbf{m o l}$
\mathbf{A}	0.25	0.15
B	0.30	0.15
C	0.10	0.30
D	0.25	0.30

