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An oscillation is defined as: 

Repeated back and forth movements on either side of any equilibrium 

position 

When the object stops oscillating, it returns to its equilibrium position 

An oscillation is a more specific term for a vibration 

An oscillator is a device that works on the principles of oscillations 
 

Oscillating systems can be represented by displacement-time graphs similar to 

transverse waves 

The shape of the graph is a sine curve 

The motion is described as sinusoidal 

Properties of Oscillations 

Displacement (x) of an oscillating system is defined as: 

The distance of an oscillator from its equilibrium position 

Amplitude (x0) is defined as: 

The maximum displacement of an oscillator from its equilibrium position 

Angular frequency (⍵) is defined as: 

The rate of change of angular displacement with respect to time 

This is a scalar quantity measured in rad s-1 and is defined by the equation: 
 

Frequency (f) is defined as: 

The number of complete oscillations per unit time 
 

It is measured in Hertz (Hz) and is defined by the equation: 
 

Time period (T) is defined as: 

The time taken for one complete oscillation, in seconds 
 

One complete oscillation is defined as: 
 

The time taken for the oscillator to pass the equilibrium from one side and 

back again fully from the other side 

 

17.1.1 Describing Oscillations 

17.1 Simple Harmonic Motion 
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The time period is defined by the equation: 
 

 

Phase difference  is how much one oscillator is in front or behind another 

When the relative position of two oscillators are equal, they are in phase 

When one oscillator is exactly half a cycle behind another, they are said to be 

in anti-phase 

Phase difference is normally measured in radians or fractions of a cycle 

When two oscillators are in antiphase they have a phase difference of π 

radians 
 

Displacement-time graph of an oscillation of a simple pendulum 
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Step 1: 

Write down the equation for angular frequency 
 

 

Step 2: 

Calculate the time period T from the graph 

The time period is defined as the time taken for one complete oscillation 

This can be read from the graph: 

Worked Example 
A student sets out to investigate the oscillation of a mass suspended from 

the free end of a spring. The mass is pulled downwards and then released. 

The variation with time t of the displacement y of the mass is shown in the 

figure below. 

Use the information from the figure to calculate the angular frequency of 

the oscillations. 
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T = 2.6 − 0.5 = 2.1 s 

 
Step 3: 

 

Substitute into angular frequency equation 
 

 

Exam Tip 

The properties used to describe oscillations are very similar to transverse 

waves. The key difference is that oscillators do not have a ʻwavelengthʼ and 

their direction of travel is only kept within the oscillations themselves rather 
than travelling a distance in space. 
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Simple harmonic motion (SHM) is a specific type of oscillation 

SHM is defined as: 
 

A type of oscillation in which the acceleration of a body is proportional to its 

displacement, but acts in the opposite direction 

 

 

Examples of oscillators that undergo SHM are: 

The pendulum of a clock 

A mass on a spring 

Guitar strings 

The electrons in alternating current flowing through a wire 
 

This means for an object to oscillate specifically in SHM, it must satisfy the 

following conditions: 

Periodic oscillations 

Acceleration proportional  to  its  displacement 

Acceleration in the opposite direction to its displacement 
 

Acceleration a and displacement x can be represented by the defining equation of 

SHM: 

a ∝ −x 
 

An object in SHM will also have a restoring force to return it to its equilibrium 

position 

This restoring force will be directly proportional, but in the opposite direction, to 

the displacement of the object from the equilibrium position 

Note: the restoring force and acceleration act in the same direction 

 

17.1.2 Simple Harmonic Motion 
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Force, acceleration and displacement of a pendulum in SHM 

 
 

 

 

This is why a person jumping on a trampoline is not an example of simple 

harmonic motion: 

The restoring force on the person is not proportional to their distance from 

the equilibrium position 

When the person is not in contact with the trampoline, the restoring force is 

equal to their weight, which is constant 

This does not change, even if they jump higher 
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The acceleration of an object oscillating in simple harmonic motion is: 

a = −⍵2x 
 

Where: 

a = acceleration (m s-2) 

⍵ = angular frequency (rad s-1) 

x = displacement (m) 

This is used to find the acceleration of an object in SHM with a particular angular 

frequency ⍵ at a specific displacement x 

The equation demonstrates: 

The acceleration reaches its maximum value when the displacement is at a 

maximum ie. x = x0 (amplitude) 

The minus sign shows that when the object is displacement to the right, the 

direction of the acceleration is to the left 
 

The acceleration of an object in SHM is directly proportional to the negative 

displacement 

The graph of acceleration against displacement is a straight line through the origin 

sloping downwards (similar to y = − x) 

Key features of the graph: 

The gradient is equal to − ⍵2 

The maximum and minimum displacement x values are the amplitudes −x0 

and +x0 

A solution to the SHM acceleration equation is the displacement equation: 
 

x = x0sin(⍵t) 

 

17.1.3 Calculating Acceleration & Displacement in SHM 
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Where: 

x = displacement (m) 

x0 = amplitude (m) 

t = time (s) 

 
 

 

 

This equation can be used to find the position of an object in SHM with a particular 

angular frequency and amplitude at a moment in time 

Note: This version of the equation is only relevant when an object begins 

oscillating from the equilibrium position (x = 0 at t = 0) 
 

The displacement will be at its maximum when sin(⍵t) equals 1 or − 1, when x = 

x0 

If an object is oscillating from its amplitude position (x = x0 or x = − x0 at t = 0) 

then the displacement equation will be: 
 

x = x0cos(⍵t) 
 

This is because the cosine graph starts at a maximum, whilst the sine graph starts 

at 0 
 

These two graphs represent the same SHM. The difference is the starting position 
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Step 1: Write down the SHM displacement equation 

 

Since the mass is released at t = 0 at its maximum displacement, the 

displacement equation will be with the cosine function: 
 

x = x0 cos(⍵t) 

Step 2: Calculate angular frequency 

2π 
ω =  

T  
= 

2π 

0.8 
= 7. 85 rad s−1 

 

Remember to use the value of the time period given, not the time where you 

are calculating the displacement from 
 

Step 3: Substitute values into the displacement equation 

x = 4.3 cos (7.85 × 0.3) = –3.0369… = –3.0 cm (2 s.f) 

Make sure the calculator is in radians mode 

The negative value means the mass is 3.0 cm on the opposite side of the 

equilibrium position to where it started (3.0 cm above it) 
 

Worked Example 

A mass of 55 g is suspended from a fixed point by means of a spring. The 

stationary mass is pulled vertically downwards through a distance of 4.3 cm 

and then released at t = 0. 

The mass is observed to perform simple harmonic motion with a period of 

0.8 s. 

Calculate the displacement x in cm of the mass at time t = 0.3 s. 

Exam Tip 

Since displacement is a vector quantity, remember to keep the minus sign in 

your solutions if they are negative, you could lose a mark if not! 
 

Also, remember that your calculator must be in radians mode when using 

the cosine and sine functions. This is because the angular frequency ⍵ is 

calculated in rad s-1, not degrees. 

You often have to convert between time period T, frequency f and angular 

frequency ⍵ for many exam questions – so make sure you revise the 
equations relating to these. 
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The speed of an object in simple harmonic motion varies as it oscillates back and 

forth 

Its speed is the magnitude of its velocity 
 

The greatest speed of an oscillator is at the equilibrium position ie. when its 

displacement is 0 (x = 0) 

The speed of an oscillator in SHM is defined by: 
 

v = v0 cos(⍵t) 
 

Where: 

v = speed (m s-1) 

v0 = maximum speed (m s-1) 

⍵ = angular frequency (rad s-1) 

t = time (s) 
 

This is a cosine function if the object starts oscillating from the equilibrium 

position (x = 0 when t = 0) 

Although the symbol v is commonly used to represent velocity, not speed, exam 

questions focus more on the magnitude of the velocity than its direction in SHM 

How the speed v changes with the oscillatorʼs displacement x is defined by: 
 

Where: 

x = displacement (m) 

x0 = amplitude (m) 

± = ʻplus or minusʼ. The value can be negative or positive 

This equation shows that when an oscillator has a greater amplitude x0, it has to 

travel a greater distance in the same time and hence has greater speed v 

Both equations for speed will be given on your formulae sheet in the exam 

When the speed is at its maximums (at x = 0), the equation becomes: 
 

v0 = ⍵x0 

 

17.1.4 Calculating Speed in SHM 
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The variation of the speed of a mass on a spring in SHM over one complete cycle 

 
 

 

 

 

Step 1: Write out the known quantities 

Amplitude of oscillations, x0 = 15 cm = 0.15 m 

Displacement at which the speed is to be found, x = 12 cm = 0.12 m 

Frequency, f = 6.7 Hz 

Step 2: Oscillator speed with displacement equation 
 

Since the speed is being calculated, the ± sign can be removed as direction does 

not matter in this case 
 

Step 3: Write an expression for the angular frequency 

Equation relating angular frequency and normal frequency: 

Worked Example 

A simple pendulum oscillates with simple harmonic motion with an 

amplitude of 15 cm. The frequency of the oscillations is 6.7 Hz.Calculate 

the speed of the pendulum at a position of 12 cm from the equilibrium 
position. 
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⍵ = 2πf = 2π× 6.7 = 42.097… 

 
Step 4: Substitute in values and calculate 

 

v = 3.789 = 3.8 m s-1 (2 s.f) 

 
 

 

 

 

Exam Tip 

You often have to convert between time period T, frequency f and angular 

frequency ⍵ for many exam questions – so make sure you revise the 
equations relating to these. 
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The displacement, velocity and acceleration of an object in simple harmonic 

motion can be represented by graphs against time 

All undamped SHM graphs are represented by periodic functions 

This means they can all be described by sine and cosine curves 
 

 

17.1.5 SHM Graphs 
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The displacement, velocity and acceleration graphs in SHM are all 90° out of phase 

with each other 

Key features of the displacement-time graph: 

The amplitude of oscillations x0 can be found from the maximum value of x 

The time period of oscillations T can be found from reading the time taken for 

one full cycle 

The graph might not always start at 0 

If the oscillations starts at the positive or negative amplitude, the 

displacement will be at its maximum 
 

Key features of the velocity-time graph: 

It is 90o out of phase with the displacement-time graph 

Velocity is equal to the rate of change of displacement 

So, the velocity of an oscillator at any time can be determined from the 

gradient of the displacement-time graph: 
 

An oscillator moves the fastest at its equilibrium position 

Therefore, the velocity is at its maximum when the displacement is zero 

Key features of the acceleration-time graph: 

The acceleration graph is a reflection of the displacement graph on the x axis 

This means when a mass has positive displacement (to the right) the 

acceleration is in the opposite direction (to the left) and vice versa 

It is 90o out of phase with the velocity-time graph 

Acceleration is equal to the rate of change of velocity 

So, the acceleration of an oscillator at any time can be determined from the 

gradient of the velocity-time graph: 
 

The maximum value of the acceleration is when the oscillator is at its 

maximum displacement 
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Step 1: The velocity is at its maximum when the displacement x = 0 

Step 2: Reading value of time when x = 0 

From the graph this is equal to 0.2 s 
 

Worked Example 
A swing is pulled 5 cm and then released.The variation of the horizontal 

displacement x of the swing with time t is shown on the graph below. 

The swing exhibits simple harmonic motion.Use data from the graph to 

determine at what time the velocity of the swing is first at its maximum. 

Exam Tip 

These graphs might not look identical to what is in your textbook, 

depending on where the object starts oscillating from at t = 0 (on either side 

of the equilibrium, or at the equilibrium). However, if there is no damping, 
they will all always be a general sine or cosine curves. 
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During simple harmonic motion, energy is constantly exchanged between two 

forms: kinetic and potential 

The potential energy could be in the form of: 

Gravitational potential energy (for a pendulum) 

Elastic potential energy (for a horizontal mass on a spring) 

Or both (for a vertical mass on a spring) 
 

Speed, v, is at a maximum when displacement, x, = 0, so: 
 

The system has maximum kinetic energy when the displacement is zero 

because the oscillator is at its equilibrium position and so moving at 

maximum velocity. 

Therefore, the kinetic energy is zero at maximum displacement x = x0, so: 

The potential energy is at a maximum when the displacement (both positive 

and negative) is at a maximum, x = ± x
0 

(amplitude) 

 

A simple harmonic system is therefore constantly converting between kinetic and 

potential energy 

When one increases, the other decreases and vice versa, therefore: 
 

The total energy of a simple harmonic system always remains constant and 

is equal to the sum of the kinetic and potential energies 

 

17.1.6 Energy in SHM 
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The kinetic and potential energy of an oscillator in SHM vary periodically 

The key features of the energy-time graph are: 

Both the kinetic and potential energies are represented by periodic functions 

(sine or cosine) which are varying in opposite directions to one another 

When the potential energy is 0, the kinetic energy is at its maximum point and 

vice versa 

The total energy is represented by a horizontal  straight  line  directly above 

the curves at the maximum value of both the kinetic or potential energy 

Energy is always positive so there are no negative values on the y axis 

 
 

 

 

Recall that the kinetic energy is defined by the equation 
 

Gravitational potential energy is defined by the equation 
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Note: kinetic and potential energy go through two complete cycles during one 

period of oscillation 

This is because one complete oscillation reaches the maximum displacement 

twice (positive and negative) 

The energy-displacement graph for half a cycle looks like: 
 

Potential and kinetic energy v displacement in half a period of an SHM oscillation 
 

The key features of the energy-displacement graph: 

Displacement is a vector, so, the graph has both positive and negative x 

values 

The potential energy is always at a maximum at the amplitude positions x0 

and 0 at the equilibrium position (x = 0) 

This is represented by a ʻUʼ shaped curve 

The kinetic energy is the opposite: it is 0 at the amplitude positions x0 and 

maximum at the equilibrium position x = 0 

This is represented by a ʻnʼ shaped curve 

The total energy is represented by a horizontal straight line above the curves 
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Exam Tip 

You may be expected to draw as well as interpret energy graphs against 

time or displacement in exam questions. Make sure the sketches of the 

curves are as even as possible and use a ruler to draw straight lines, for 
example, to represent the total energy. 
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The total energy of system undergoing simple harmonic motion is defined by: 

1 

 
 

 

E = 
2

 mω2x2 
0 

 

Where: 

E = total energy of a simple harmonic system (J) 

m = mass of the oscillator (kg) 

⍵ = angular frequency (rad s-1) 

x0 = amplitude (m) 
 

Step 1: Write down all known quantities 

Mass, m = 23 g = 23 × 10–3 kg 

Amplitude, x0 = 1.5 cm = 0.015 m 

Frequency, f = 4.8 Hz 

 
Step 2: Write down the equation for the total energy of SHM oscillations: 

 

1 
E = 

2
 

 
mω2x2 

0 

 

Step 3: Write an expression for the angular frequency 

 
ω = 2πf = 2π × 4.8 

 

Worked Example 
A ball of mass 23 g is held between two fixed points A and B by two stretch 

helical springs, as shown in the figure below 

The ball oscillates along the line AB with simple harmonic motion of 

frequency 4.8 Hz and amplitude 1.5 cm.Calculate the total energy of the 

oscillations. 
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Step 4: Substitute values into energy equation 

 
1 

 
 

 

E = 
2 

× (23 × 10−3) × (2π × 4.8)2 × (0.015)2 

E = 2.354 × 10−3 = 2.4 mJ (2 s. f .) 



For more help, please visit www.exampaperspractice.co.uk 

 

 

 

 
 

 
 

 

In practice, all oscillators eventually stop oscillating 

Their amplitudes decrease rapidly, or gradually 
 

This happens due to resistive forces, such friction or air resistance, which act in 

the opposite direction to the motion of an oscillator 

Resistive forces acting on an oscillating simple harmonic system cause damping 

These are known as damped oscillations 
 

Damping is defined as: 
 

The reduction in energy and amplitude of oscillations due to resistive forces 

on the oscillating system 

Damping continues until the oscillator comes to rest at the equilibrium position 

A key feature of simple harmonic motion is that the frequency of damped 

oscillations does not change as the amplitude decreases 

For example, a child on a swing can oscillate back and forth once every 

second, but this time remains the same regardless of the amplitude 
 

Damping on a mass on a spring is caused by a resistive force acting in the opposite 

direction to the motion. This continues until the amplitude of the oscillations reaches 

zero 

 

17.2.1 Damping 

17.2 Damped Oscillations 



For more help, please visit www.exampaperspractice.co.uk 

 

 

 

 
Exam Tip 

Make sure not to confuse resistive force and restoring force: 

Resistive force is what opposes the motion of the oscillator and causes 

damping 

Restoring force is what brings the oscillator back to the equilibrium 

position 
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There are three degrees of damping depending on how quickly the amplitude of 

the oscillations decrease: 

Light damping 

Critical damping 

Heavy damping 

Light Damping 

When oscillations are lightly damped, the amplitude does not decrease linearly 

It decays exponentially with time 
 

When a lightly damped oscillator is displaced from the equilibrium, it will oscillate 

with gradually decreasing amplitude 

For example, a swinging pendulum decreasing in amplitude until it comes to a 

stop 
 

A graph for a lightly damped system consists of oscillations decreasing exponentially 
 

Key features of a displacement-time graph for a lightly damped system: 

There are many oscillations represented by a sine or cosine curve with  

gradually decreasing amplitude over time 

This is shown by the height of the curve decreasing in both the positive and 

negative displacement values 

The amplitude decreases exponentially 

The frequency of the oscillations remain constant, this means the time period 

of oscillations must stay the same and each peak and trough is equally spaced 

Critical Damping 

When a critically damped oscillator is displaced from the equilibrium, it will return 

to rest at its equilibrium position in the shortest possible time without oscillating 

For example, car suspension systems prevent the car from oscillating after 

travelling over a bump in the road 
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The graph for a critically damped system shows no oscillations and the displacement 

returns to zero in the quickest possible time 

Key features of a displacement-time graph for a critically damped system: 

This system does not oscillate, meaning the displacement falls to 0 straight 

away 

The graph has a fast decreasing gradient when the oscillator is first displaced 

until it reaches the x axis 

When the oscillator reaches the equilibrium position (x = 0), the graph is a 

horizontal line at x = 0 for the remaining time 

Heavy Damping 

When a heavily damped oscillator is displaced from the equilibrium, it will take a 

long time to return to its equilibrium position without oscillating 

The system returns to equilibrium more slowly than the critical damping case 

For example, door dampers to prevent them slamming shut 
 

A heavy damping curve has no oscillations and the displacement returns to zero after 

a long period of time 

Key features of a displacement-time graph for a heavily damped system: 

There are no oscillations. This means the displacement does not pass 0 
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The graph has a slow decreasing gradient from when the oscillator is first 

displaced until it reaches the x axis 

The oscillator reaches the equilibrium position (x = 0) after a long period of 

time, after which the graph remains a horizontal line for the remaining time 

 

 

 

ANSWER: 
 

Ideally, the needle should not oscillate before settling 

This means the scale should have either critical or heavy damping 
 

Since the scale is read straight away after a weight is applied, ideally the needle 

should settle as quickly as possible 

Heavy damping would mean the needle will take some time to settle on the scale 

Therefore, critical damping should be applied to the weighing scale so the needle 

can settle as quickly as possible to read from the scale 

Worked Example 

A mechanical weighing scale consists of a needle which moves to a position 

on a numerical scale depending on the weight applied. Sometimes, the 

needle moves to the equilibrium position after oscillating slightly, making it 

difficult to read the number on the scale to which it is pointing to.Suggest, 

with a reason, whether light, critical or heavy damping should be applied to 
the mechanical weighing scale to read the scale more easily. 
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In order to sustain oscillations in a simple harmonic system, a periodic force must 

be applied to replace the energy lost in damping 

This periodic force does work on the resistive force decreasing the 

oscillations 

These are known as forced oscillations, and are defined as: 

Periodic forces which are applied in order to sustain oscillations 
 

For example, when a child is on a swing, they will be pushed at one end after each 

cycle in order to keep swinging and prevent air resistance from damping the 

oscillations 

These extra pushes are the forced oscillations, without them, the child will 

eventually come to a stop 

The frequency of forced oscillations is referred to as the driving frequency (f) 

All oscillating systems have a natural frequency (f0), this is defined as: 

The frequency of an oscillation when the oscillating system is allowed to 

oscillate freely 

Oscillating systems can exhibit a property known as resonance 

When resonance is achieved, a maximum amplitude of oscillations can be 

observed 

Resonance is defined as: 
 

When the driving frequency applied to an oscillating system is equal to its 

natural frequency, the amplitude of the resulting oscillations increases 

significantly 

For example, when a child is pushed on a swing: 

The swing plus the child has a fixed natural frequency 

A small push after each cycle increases the amplitude of the oscillations to 

swing the child higher 

If the driving frequency does not quite match the natural frequency, the 

amplitude will increase but not to the same extent at when resonance is 

achieved 
 

This is because at resonance, energy is transferred from the driver to the 

oscillating system most efficiently 

Therefore, at resonance, the system will be transferring the maximum kinetic 

energy possible 
 

A graph of driving frequency f against amplitude a of oscillations is called a 

resonance curve. It has the following key features: 

When f < f0, the amplitude of oscillations increases 

At the peak where f = f0, the amplitude is at its maximum. This is resonance 

 

17.2.2 Resonance 
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When f > f0, the amplitude of oscillations starts to decrease 
 

The maximum amplitude of the oscillations occurs when the driving frequency is 

equal to the natural frequency of the oscillator 

 
 

 

Damping reduces the amplitude of resonance vibrations 

The height and shape of the resonance curve will therefore change slightly 

depending on the degree of damping 

Note: the natural frequency f0 will remain the same 
 

As the degree of damping is increased, the resonance graph is altered in the 

following ways: 

The amplitude of resonance vibrations decrease, meaning the peak of the 

curve lowers 

The resonance peak broadens 

The resonance peak moves slightly to the left of the natural frequency when 

heavily damped 
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As damping is increased, resonance peak lowers, the curve broadens and moves 

slightly to the left 
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