

16.2 Activation Energy Mark Schemes

Exam Papers Practice

To be used by all students preparing for DP IB Chemistry HL Students of other boards may also find this useful

1

The correct answer is C because:

- · Statement I is incorrect
 - The gradient has a value of -E_a / R
- Statement II is correct
 - The intercept on the rate constant axis does give the value for In A
- Statement III is correct
 - Provided that the temperature is measured in Kelvin and the gas constant is measured in J mol⁻¹ K⁻¹, then an Arrhenius plot will give a value for activation energy in J mol⁻¹

A, B & D are incorrect as

statement lis incorrect

2

The correct answer is **D** because:

- The equation to use is k = A e^(-E_a/RT)
- The values of A and R are given with no need for any conversions
- E_a is given in kJ mol⁻¹ and needs to be converted in J mol⁻¹
- o Therefore, the activation energy is 96200 J mol⁻¹
 - A less common alternative would be to convert Rinto kJ K⁻¹ mol⁻¹
- Tis given in °C and needs to be converted into Kelvin
 - o Therefore, the temperature for use in the equation is 298 K
- · Substituting the numbers into the equation gives:

$$k = (2.57 \times 10^9) \times e^{(-96200/8.31 \times 298)}$$

A is incorrect as	E _a and T have not been converted into the correct units for use in the equation
B is incorrect as	E _a has not been converted into J mol ⁻¹
C is incorrect as	T has not been converted into Kelvin

The correct answer is **B** because:

•
$$\ln k = \frac{-E_a}{RT} + \ln A$$

•
$$\frac{E_a}{RT} = \ln A - \ln k$$

•
$$T = \frac{E_a}{R \times (\ln A - \ln k)}$$

A is incorrect as	the activation energy has not been converted into J mol ⁻¹
C is incorrect as	the In <i>k</i> and In <i>A</i> terms are the wrong way around

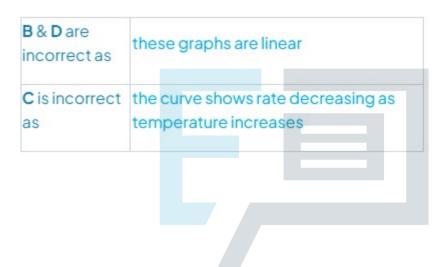
D is incorrect	the gas constant has been converted into kJ K ⁻¹ mol ⁻¹ and the activation energy
as	has been converted into J mol ⁻¹ so they
	are not in the same units
	The gas constant can be converted into kJ K ⁻¹ mol ⁻¹ BUT this means that the activation energy must remain in kJ mol ⁻¹

The correct answer is A because:

- Statement lis correct
 - o An increase of 10 K can cause the initial rate of reaction to roughly double but this is only true of reactions with an E_a of around 50 kJ mol-1
- Statement II is correct
 - For a second order reaction, rate = $k[X]^2$

• So,
$$K = \frac{\text{rate}}{[X]^2} = \frac{\text{mol dm}^{-3} s^{-1}}{[\text{mol dm}^3]^2}$$

- This simplifies to mol⁻¹ dm³ s⁻¹
- Statement III is incorrect
- o A relates to the number and orientation of collisions


statement III is incorrect

5

The correct answer is A because:

- The graph showing the relationship between the rate constant, k, and temperature shows an exponential increase
- Careful: Don't confuse this question with the graph of $\ln k$ with $\frac{1}{T}$ which is linear

Exam Papers Practice