

16.1 Rate Expression & Reaction Mechanism Mark Schemes

Exam Papers Practice

To be used by all students preparing for DP IB Chemistry HL Students of other boards may also find this useful

1

The correct answer is A because:

- Statement I is correct
 - The size of k can indicate the speed of a reaction, e.g. high values
 of k are associated with fast reactions and low values of k are
 associated with slow reactions
- Statement II is correct
 - The rate constant is affected by temperature
- Statement III is incorrect
 - The units of k depend on the rate expression and therefore the orders / reactions of differing orders
 - The units of k are: mol dm⁻³ s⁻¹ for a zero order reaction s⁻¹ for a first order reaction mol⁻¹ dm³ s⁻¹ for a second order reaction mol⁻² dm⁶ s⁻¹ for a third order reaction

B, C & D are incorrect as

statement III is incorrect

Exam Papers Practice

The correct answer is C because:

- Careful: The graph is for the concentration of propanone only
 - You do not need to consider [H+]
- As propanone features in the rate expression but is not raised to a power, we can deduce that the reaction with respect to propanone is first order
- In a first-order reaction, the rate is directly proportional to the concentration of a reactant
- On a rate-concentration graph, a first order reaction is a straight line starting at the origin

A is incorrect as	this is the shape of a first order concentration-time graph
B is incorrect as	this is the shape of a zero order concentration-time graph
D is incorrect as	this is the shape of a second order rate- concentration graph

3

The correct answer is A because:

- When [C₂H₅Br] doubles but [OH⁻] remains constant, then the rate doubles
 - Therefore, the reaction is first order with respect to [C2H5Br]
- When [OH⁻] doubles but [C₂H₅Br] remains constant, then the rate doubles
 - Therefore, the reaction is first order with respect to [OH-]

B , C & D are	neither chemical is second
incorrect as	order

4

The correct answer is C because:

- From the overall equation
 - The only reactant listed in the table is CH₃COCH₃
 - o None of the chemicals listed in the table are products
- Since CH₃COHCH₂ and H⁺ are not reactants or products, they can only be intermediates or catalysts
 - Since CH₃COHCH₂ is not reformed at the end, it must be an intermediate
 - Since H⁺ is reformed at the end, it must be a catalyst

A is incorrect as	none of the classifications are correct
B is incorrect as	the classifications for H ⁺ and CH ₃ COHCH ₂ are incorrect
D is incorrect	H*is not a product Pactic

5

The correct answer is A because:

- The correct rate expression is rate = k[CH₃CHO][OH⁻]
- It is very easy to miss the rate constant, k, out of rate expressions and this can cost you a mark in exams

B is incorrect as	this is a correct statement
	Step 1 is identified as the slow step which means that it is the rate-determining step
Cis	this is a correct statement
incorrect as	OH ⁻ features in the rate expression but not in the overall reaction equation, therefore, it is a catalyst
D is incorrect as	this is a correct statement The slowest step in a reaction mechanism has the highest activation energy, therefore, steps 2 and 3 must be lower in activation energy than step 1

Exam Papers Practice