

15.2 Entropy & Spontaneity

Question Paper

Exam Papers Practice

To be used by all students preparing for DP IB Chemistry HL Students of other boards may also find this useful

Question 1

Which of the following conditions will mean a reaction is never feasible?

	ΔН	ΔS	Temperature
Α	Negative	Positive	High
В	Positive	Negative	High
С	Negative	Negative	Low
D	Positive	Positive	High

[1 mark]

Question 2

 $\label{thm:conding} \mbox{Ethene} \mbox{ is produced according to the following gas-phase synthesis:}$

$$2C(s) + 2H_2(g) \rightarrow C_2H_4(g)$$

Thermodynamic data for the components of this equilibrium are

Change	Value
$\Delta H^{\Theta}_{r}/kJ \text{mol}^{-1}$	р
ΔS ^Θ /JK ⁻¹ mol ⁻¹	9

ers Practice

The free energy change for this reaction at 298 K is:

$$A. \Delta G^{\Theta} = p - 298 \times q$$

$$\mathsf{B.\Delta G}^{\Theta} = \frac{\mathsf{p}}{298 \times \frac{\mathsf{q}}{1000}}$$

$$C.\Delta G^{\Theta} = p - 298 \times \frac{q}{1000}$$

D.
$$\Delta G^{\Theta} = \frac{p \times 298}{q}$$

[1 mark]

Question 3

Which statements are correct for the following reaction?

$$CO(NH_2)_2(aq) + H_2O(l) \rightarrow CO_2(g) + 2NH_3(g)$$

$$\Delta H^{\Theta}_{r} = +119 \text{ kJ mol}^{-1}$$

 $\Delta S^{\Theta} = +354.8 \text{ J K}^{-1} \text{ mol}^{-1}$

- I. The reaction will be feasible at high temperatures
- II. The reaction will never be feasible
- III. The reaction becomes more disordered
- A. I and II only
- B. I and III only
- C. II and III only
- D. I, II and III

[1 mark]

Question 4

Which of the following equations is used when calculating the temperature, in Kelvin, at which a reaction becomes feasible if $\Delta H^{\Theta} = x$ and $\Delta S^{\Theta} = y$.

A.
$$T = \frac{x}{v}$$

$$B.T = xy$$

D.
$$T = \frac{y}{x}$$

[1 mark]

Question 5

The ΔG^{Θ}_f values for the following substances are shown.

Substance	$\Delta G^{\Theta}_{f}(kJ \text{mol}^{-1})$
NH ₃ (g)	-16.4
O ₂ (g)	0
H ₂ O(g)	-228.6
NO(g)	87.6

Which of the following is the correct calculation to determine ΔG^{Θ} ?

$$4NH_{3}(g) + 5O_{2}(g) = 6H_{2}O(g) + 4NO(g)$$

$$A. (-228.6 + 87.6) + (-16.4)$$

$$B. (-16.4 \times 4) - [(-228.6 \times 6) + (87.6 \times 4)]$$

$$C. [-228.6 + (87.6 \times 4)] - (-16.4 \times 4)$$

$$D. [(-228.6 \times 6) + (87.6 \times 4)] - (-16.4 \times 4)$$

[1 mark]

Exam Papers Practice