Exam Papers Practice

15.2 Entropy \& Spontaneity Question Paper

Course	DPIB Chemistry	
Section	15. Energetics/Thermochemistry (HL only)	
Topic	Medium	

To be used by all students preparing for DP IB Chemistry HL Students of other boards may also find this useful

Question 1

Which of the following conditions will mean a reaction is never feasible?

	$\boldsymbol{\Delta H}$	$\boldsymbol{\Delta S}$	Temperature
A	Negative	Positive	High
B	Positive	Negative	High
C	Negative	Negative	Low
D	Positive	Positive	High

Question 2

Ethene is produced according to the following gas-phase synthesis:

$$
2 \mathrm{C}(\mathrm{~s})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})
$$

Thermodynamic data for the components of this equilibrium are

Change	Value
$\Delta H^{\ominus} / \mathrm{kJ} \mathrm{mol}^{-1}$	P
$\Delta \mathrm{S}^{\ominus} / \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$	q

The free energy change for this reaction at 298 K is:
A. $\Delta G^{\theta}=p-298 \times q$
B. $\Delta G^{\Theta}=\frac{p}{298 \times \frac{\mathrm{q}}{1000}}$
C. $\Delta G^{\Theta}=p-298 \times \frac{q}{1000}$
D. $\Delta G^{\Theta}=\frac{p \times 298}{q}$

Question 3

Which statements are correct for the following reaction?
$\mathrm{CO}\left(\mathrm{NH}_{2}\right)_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{NH}_{3}(\mathrm{~g})$

$$
\begin{aligned}
& \Delta H^{\Theta}=+119 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
& \Delta \mathrm{~S}^{\ominus}=+354.8 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}
\end{aligned}
$$

I. The reaction will be feasible at high temperatures
II. The reaction will never be feasible
III. The reaction becomes more disordered
A. I and II only
B. I and III only
C. II and III only
D. I, II and III

Question 4

Which of the following equations is used when calculating the temperature, in Kelvin, at which a reaction becomes feasible if $\Delta H^{\Theta}=x$ and $\Delta S^{\Theta}=y$.
A. $T=\frac{x}{y}$

B. $T=x y$
C. $T=x+y$

D. $T=\frac{y}{x}$
[1 mark]

Question 5

The ΔG^{Θ} values for the following substances are shown.

Substance	$\Delta G^{\Theta} \mathbf{f}\left(\mathbf{k J} \mathrm{mol}^{-\mathbf{1}}\right)$
$\mathrm{NH}_{3}(\mathrm{~g})$	-16.4
$\mathrm{O}_{2}(\mathrm{~g})$	0
$\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$	-228.6
$\mathrm{NO}(\mathrm{g})$	87.6

Which of the following is the correct calculation to determine ΔG^{θ} ? $4 \mathrm{NH}_{3}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g})=6 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})+4 \mathrm{NO}(\mathrm{g})$
A. $(-228.6+87.6)+(-16.4)$
B. $(-16.4 \times 4)-[(-228.6 \times 6)+(87.6 \times 4)]$
C. $[-228.6+(87.6 \times 4)]-(-16.4 \times 4)$
D. $[(-228.6 \times 6)+(87.6 \times 4)]-(-16.4 \times 4)$

