

15.2 Entropy & Spontaneity

Mark Schemes

Exam Papers Practice

To be used by all students preparing for DP IB Chemistry HL Students of other boards may also find this useful

The	correct	answer	is B	because:
1110	concor	anower	10 0	Decause.

- $\Delta G = \Delta H T \Delta S$
- No matter the value for T(temperature), the value for ΔG will always be greater than zero when ΔH is positive and ΔS is negative, therefore not feasible
- For a reaction to be feasible, the reaction must have a value equal to or lower than zero

lf∆H	and if ∆ <i>S</i>	then∆Gis	Feasible?
ls negative po	ls ositive	Always negative	Always
ls positive ne	ls egative	Always positive	Never
ls legative ne	ls egative	Negative at low temperature	Feasible at low temperatures
ls positive po	ls ositive	Negative at high temperature	Feasible at high temperatures

A is incorrectthese conditions mean the value for ΔGaswill always be negative, even if the
temperature is low or high.Therefore, the reaction is always
feasible.

	these co	nditions r	mean the	e value	TOLAC											
incorrect as	will always be negative, but the															
	temperature must be as stated, If ΔH is negative and ΔS is negative, the temperature must be low for the reaction to be feasible. If ΔH is positive and ΔS is positive, the temperature must be high for the															
						reaction	to be fea	sible.								
												_				
						2										
						T I		haaruaa								
	The correct	answeris	Decause	-												
The correct	answeris	because														
	answeris C .H [⊕] - T∆ <i>S</i> [⊕]	because														
• $\Delta G^{\Theta} = A$		because			ų											
• ∆ <i>G</i> ^θ = <i>L</i> • So over	.H [⊖] - T∆ <i>S</i> [⊖] all:															
 ΔG^Θ = Δ So over ΔG 	. <i>H[⊖] -</i> T∆ <i>S[⊖]</i> all: [⊖] = <i>p</i> - 298	x <u>q</u> 1000		_												
 ΔG^Θ = Δ So over ΔG Remen 	. <i>H[⊖] -</i> T∆ <i>S[⊖]</i> all: ^Ə = <i>p</i> - 298 ber: The u	$x \frac{q}{1000}$ hits for ΔF	- [∂] and ∆							ue						
 ΔG^Θ = Δ So over ΔG Remen 	. <i>H[⊖] -</i> T∆ <i>S[⊖]</i> all: [⊖] = <i>p</i> - 298	$x \frac{q}{1000}$ hits for ΔF	- [∂] and ∆							ue						
 ΔG^θ = Δ So over ΔG Remen 	. <i>H[⊖] -</i> T∆ <i>S[⊖]</i> all: ^Ə = <i>p</i> - 298 ber: The u	$x \frac{q}{1000}$ hits for ΔF	- [∂] and ∆							ue						
 ΔG^θ = Δ So over ΔG Rement for ΔSr mol⁻¹ 	all: ^Ə = p - 298 ber : The un nust be div	$x \frac{q}{1000}$ hits for ΔF ded by 10	- ^θ and Δ 000 to c	convert	from.	J K-1	mol	-1 to l	kJ K-1							
 ΔG^θ = Δ So over ΔG Rement for ΔSr mol⁻¹ Exa 	. <i>H[⊖] -</i> T∆ <i>S[⊖]</i> all: ^Ə = <i>p</i> - 298 ber: The u	$x - \frac{q}{1000}$ hits for ΔF ded by 10	- ^θ and Δ 000 to c	convert	from.	J K-1	mol	-1 to l	kJ K-1							
 ΔG^Θ = Δ So over ΔG Rement for ΔSr mol⁻¹ Exact 	$H^{\Theta} - T\Delta S^{\Theta}$ all: $\theta^{\Theta} = p - 298$ ber : The un nust be div miners of t	$x - \frac{q}{1000}$ hits for ΔF ded by 10	- ^θ and Δ 000 to c	convert	from.	J K-1	mol	-1 to l	kJ K-1							
• $\Delta G^{\Theta} = A$ • So over • ΔG • Rement for ΔSr mol ⁻¹ • Exa	$H^{\Theta} - T\Delta S^{\Theta}$ all: $B^{\Theta} = p - 298$ ber: The un nust be div miners of to miners of to	$x - \frac{q}{1000}$ hits for ΔF ded by 10 en comme	- [∂] and ∆ 000 to c ent on u	onvert	from . t being	g co	mol	-1 to l	kJ K-1							
• $\Delta G^{\Theta} = A$ • So over • ΔG • Rement for ΔSr mol ⁻¹ • Exa contained A is incorrect	$H^{\Theta} - T\Delta S^{\Theta}$ all: $B^{\Theta} = p - 298$ ber: The up nust be div miners of to miners of to mon mist	$x \frac{q}{1000}$ hits for ΔF ded by 10 en comme ake $x \Delta S^{\Theta}$ have	- ^θ and Δ 000 to c ent on u	onvert nits not	from . t being	g co	mol	-1 to l	kJ K-1							
• $\Delta G^{\Theta} = A$ • So over • ΔG • Rement for ΔSr mol ⁻¹ • Exa contained A is incorrect	$H^{\Theta} - T\Delta S^{\Theta}$ all: $B^{\Theta} = p - 298$ ber: The un nust be div miners of to miners of to	$x \frac{q}{1000}$ hits for ΔF ded by 10 en comme ake $x \Delta S^{\Theta}$ have	- ^θ and Δ 000 to c ent on u	onvert nits not	from . t being	g co	mol	-1 to l	kJ K-1							
• $\Delta G^{\Theta} = A$ • So over • ΔG • Rement for ΔSr mol ⁻¹ • Exa contract at B is	$H^{\Theta} - T\Delta S^{\Theta}$ all: $B^{\Theta} = p - 298$ ber: The un nust be div miners of to nmon mist the units fo 000 to co	$x \frac{q}{1000}$ hits for ΔF ded by 10 en comme ake $x \Delta S^{\Theta}$ have nvert to k	- ^θ and Δ 000 to c ent on u e not be J K ⁻¹ mol	en divid	from . t being	g co	mol	-1 to l	kJ K-1							
 ΔG^Θ = Δ So over ΔG Rement for ΔSr mol⁻¹ Exacon A is incorrect at 	$H^{\Theta} - T\Delta S^{\Theta}$ all: $\theta = p - 298$ ber: The un nust be div miners often mon mist the units fo 000 to co	$x \frac{q}{1000}$ hits for ΔF ded by 10 en comme ake $x \Delta S^{\Theta}$ have hvert to k ct equation	- ^θ and Δ 000 to c ent on u e not be J K ⁻¹ mol	en divid	from . t being	g co	mol	-1 to l	kJ K-1							
 ΔG^Θ = Δ So over ΔG Rement for ΔSr mol⁻¹ Exacon A is incorrect at 	$H^{\Theta} - T\Delta S^{\Theta}$ all: $B^{\Theta} = p - 298$ ber: The un nust be div miners of to nmon mist the units fo 000 to co	$x \frac{q}{1000}$ hits for ΔF ded by 10 en comme ake $x \Delta S^{\Theta}$ have hvert to k ct equation	- ^θ and Δ 000 to c ent on u e not be J K ⁻¹ mol	en divid	from . t being	g co	mol	-1 to l	kJ K-1							

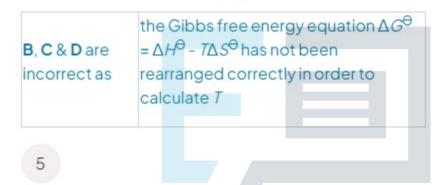
Dis	the units for ΔS^{Θ} have not been divided by
incorrect	1000 to convert to kJ K ⁻¹ mol ⁻¹ and the
as	incorrect equation has been used to calculate $\Delta {\cal G}^{\Theta}$

3

The correct answer is **B** because:

- Statement II is incorrect
- You are given the values $\Delta H^{\Theta}_r = +119 \text{ kJ mol}^{-1} \text{ and } \Delta S^{\Theta} = +354.8 \text{ J K}^{-1} \text{ mol}^{-1}$
- ΔH^{Θ}_{r} and ΔS^{Θ} are both positive
- The equation to calculate the free energy change is
 ΔG^Θ = ΔH^Θ TΔS^Θ
- At higher temperatures, $T\Delta S$ will become more and more negative, and will eventually outweigh the effect of ΔH
- The reaction won't be feasible at low temperatures, but if you heat it, there will be a temperature at which it becomes feasible, because ΔG becomes negative
- Such a process is spontaneous at high temperatures and nonspontaneous at low temperatures

lf ∆ <i>H</i>	And if Δ <i>S</i>	Then∆Gis	Feasible?
Is positive > 0 endothermic	Is positive > 0 More disorder	Negative at high <i>T</i> Positive at low <i>T</i>	Depending on T


- Therefore statement l is correct
 - The reaction will be feasible at high temperatures, but will not be feasible at low temperatures
- Statement III is correct
 - As ΔS^{Θ} = +354.8 J K⁻¹ mol⁻¹ is positive, the reaction is becoming more disordered

The correct answer is A because:

- The equation to calculate Gibbs free energy change is:
 - $\circ \ \Delta G^{\Theta} = \Delta H^{\Theta} T \Delta S^{\Theta}$
 - $\circ \ \Delta G^{\Theta} = x \mathsf{T} y$
- A reaction is not feasible if $\Delta {\cal G}^{\Theta}$ is greater than 0
- So, in the equation ΔG^{Θ} becomes 0
- Therefore the correct rearrangement is:

•
$$T = \frac{x}{y}$$
 becomes $T = \frac{\Delta H^{\Theta}}{\Delta S^{\Theta}}$

The correct answer is D because:

- In order to determine ΔG^{Θ} the required equation is:
 - $\circ \ \Delta G^{\Theta} = \Sigma \Delta G^{\Theta}_{f} \text{ products} \Sigma \Delta G^{\Theta}_{f} \text{ reactants}$
- Careful: When calculating ΔG^Θ you must multiply the values using the correct stoichiometry
 - So, for 6H₂O (g) you include (6 x 228.6) in the equation
- Overall the calculation is:
 - $\Delta G^{\Theta} = \Sigma \Delta G^{\Theta}_{f} \text{ products} \Sigma \Delta G^{\Theta}_{f} \text{ reactants}$
 - $\Delta G^{\Theta} = [(-228.6 \times 6) + (87.6 \times 4)] (-16.4 \times 4)$
 - This can then continue on to get the final answer like if this was a question on paper 2 :
 - $\Delta G^{\Theta} = (-1371.6 + 350.4) (-65.6)$
 - $\Delta G^{\Theta} = -1021.2 + 65.6$
 - ΔG^Θ = -955.6 (kJ mol⁻¹)
- Given the $\Delta G^{\Theta}{}_f$ of oxygen is 0, we do not need to include this in the equation

A is incorrect as	the stoichiometry of the reactants and products has not been used in the calculation
B is incorrect as	$\Delta G^{\Theta} = \Sigma \Delta G^{\Theta}_{f} \text{ reactants} - \Sigma \Delta G^{\Theta}_{f} \text{ products}$ has been used to calculate ΔG^{Θ}
C is incorrect as	the stoichiometry of H ₂ O (g) has not been taken into account

Exam Papers Practice