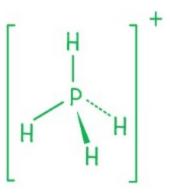


14.2 Further Aspects of Bonding

Mark Schemes

Exam Papers Practice

To be used by all students preparing for DP IB Chemistry HL Students of other boards may also find this useful


The correct answer is **B** because:

- · Structures I and III have resonance structures
- This is because they both contain more than one bonded oxygen and the electrons in the double bond are able to spread themselves evenly across both oxygens

A, C & D are incorrect as	structure II is incorrect as it does not contain other carbon oxygen single bonds to allow the double bond electrons to spread across to
2	

The correct answer is A because:

- Phosphorus is in group 15 so has 5 electrons in its outer shell
- Four of these electrons are involved in bonds to the four hydrogen atoms
- The remaining electron is removed as the ion has a positive charge_
- This gives the molecule four electron domains
- We can determine hybridisation of the central atom from the number of electron domains
- Four bond pairs and no lone pairs give the molecular a tetrahedral shape

B, C & D are	these options give the incorrect
incorrect as	molecular shape and hybridisation
	of the central atom

3

The correct answer is A because:

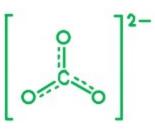
- The breakdown of O₂ involves shorter wavelength light (λ <242 nm) than the breakdown of O₃ (λ < 330 nm)
- The difference is due to the relative strengths of the O–O bonds in the two molecules
- O₃ has a bond order of 1.5 whereas O₂ has a bond order of 2
- The stronger bonds in O₂ require the higher energy radiation of the shorter wavelength to break

B is incorrect as	O_2 bond dissociation occurs at a higher energy than O_3 as O_2 bonds are stronger	
C is incorrect as	O ₃ bonds are longer than O ₂ bonds	ractice
D is incorrect as	O ₃ bond dissociation occurs at a lower frequency of light than O ₂ (remember wavelength and frequency are inversely proportional)	

Page	3
------	---

The correct answer is A because:

- · Carbon has 3 bond pairs
- This gives it 3 electron domains so will be sp² hybridised
- Oxygen has 1 bond pair and two lone pairs
- This gives it 3 electron domains so will be sp² hybridised
- Electron domains refer to the number of bond pairs and lone pairs around an atom


B, C & D are incorrect as	they give the wrong hybridisation types for carbon and oxygen
5	
The correct ar	nsweris C because:

- Structures II has two nitrogen oxygen bonds
 - The pi electrons in the nitrogen oxygen double bond spread across both these bonds

- · Structures III has three carbon oxygen bonds
 - The pi electrons in the carbon oxygen double bond spread across all three of these bonds

0

tructure I only has no other bonds in	A, B & D are
hich the pi electrons in the carbon	incorrect as
xygen double bond can spread	
cross	

Exam Papers Practice