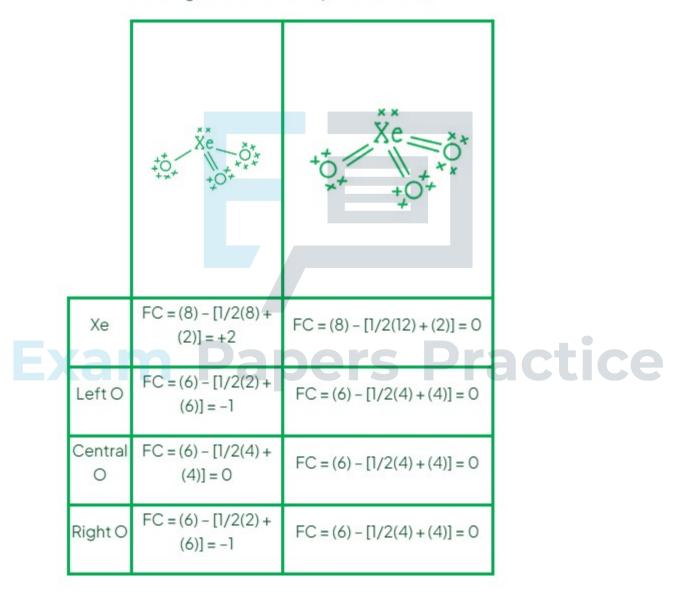



## 14.1 More Structures & Shapes

### **Mark Schemes**




**Exam Papers Practice** 

To be used by all students preparing for DP IB Chemistry HL Students of other boards may also find this useful



#### The correct answer is **D** because:

- To determine the formal charge on the xenon and oxygen atoms we use the formula:
  - Formal charge (FC) on atom = valence electrons of atom (1/2 bonding electrons + lone pair electrons)



- Structure on the right is the preferred structure as it has the lowest formal charge
- XeO<sub>3</sub> has 6 bond pairs arranged in 3 double bonds and 1 lone pair
  - 3 bond pairs and 1 lone pairs gives a trigonal pyramidal shape



| A, B & C are incorrect as | all three statements are correct |
|---------------------------|----------------------------------|
|                           |                                  |

#### The correct answer is C because:

- Sulfur has 6 electrons in its outer shell
- It has 4 bonds with chlorine atoms which each contribute an extra electron
- $\bullet$  Hence in SC  $I_4$  sulfur has an expanded octet with 10 electrons

| A is<br>incorrect<br>as  | phosphorus is in group 15 so has 5<br>electrons in its outer shell. Each chlorine<br>contributes 1 electron giving phosphorus a<br>full outer shell                                                                      |        |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| B is incorrect as        | boron is in group 13 so has 3 electrons in its outer shell. Each fluorine contributes an extra electron giving boron 7 electrons. We add an extra electron as the ion has a -1 charge giving a full outer shell          | actice |
| <b>D</b> is incorrect as | nitrogen is in group 15 so has 5 electrons in<br>its outer shell. Each hydrogen contributes<br>an extra electron giving nitrogen 9<br>electrons. We subtract one as the ion has a<br>+1 charge giving a full outer shell |        |



#### The correct answer is C because:

- Phosphorus is in group 15 so has 5 electrons in its outer shell
- · Each chlorine atom contributes an electron to phosphorus
- This gives phosphorus a total of 10 electrons arranged in 5 bond pairs
- 5 bond pairs and no lone pairs corresponds to a trigonal bipyramidal shape

| A is<br>incorrect<br>as  | PCI <sub>3</sub> has 3 bond pairs and 1 lone pair giving it a pyramidal shape       |  |
|--------------------------|-------------------------------------------------------------------------------------|--|
| <b>B</b> is incorrect as | SiC I <sub>4</sub> has 4 bond pairs and no lone pairs giving it a tetrahedral shape |  |
| <b>D</b> is incorrect as | SF <sub>6</sub> has 6 bond pairs and no lone pairs giving it an octahedral shape    |  |

# **Exam Papers Practice**

#### The correct answer is C because:

- Each single bond consists of a sigma bond
  - o 5 x C-H bonds = 5 sigma bonds
  - o 1xO-H bond = 1 sigma bond
  - o 1xC-O bond = 1 sigma bond
  - o 2 x C-C bond = 2 sigma bonds
- Each double bond consists of a sigma and pi bond
  - 1xC=C=1sigma and 1pi bond
  - o 1xC=O=1sigma and 1pi bond

| <b>A</b> , <b>B</b> & <b>D</b> are | they contain the incorrect number of |
|------------------------------------|--------------------------------------|
| incorrect as                       | sigma and pi bonds                   |
|                                    |                                      |



#### The correct answer is C because:

- Br is in group 17 so has 7 electrons in its outer shell
- Each chlorine atom contributes 4 electrons giving 11 electrons in total
- We have to add one electron to account for the negative charge on the ion, giving 12 electrons in total (6 pairs of electrons)
- These are arranged in 4 bond pairs and 2 lone pairs
- This corresponds to a octahedral arrangement of the electron domains but a square planar molecular geometry

| A is<br>incorrect<br>as  | a tetrahedral molecular geometry corresponds to 4 bond pairs and no lone pairs                 |
|--------------------------|------------------------------------------------------------------------------------------------|
| <b>B</b> is incorrect as | a tetrahedral electron domain geometry corresponds to 4 electron domains                       |
| D is incorrect as        | both electron domain geometry and molecular geometry are incorrect for the reasons given above |