

Exam Papers Practice

Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark schemes
Suitable for all boards
Designed to test your ability and thoroughly prepare you

14.1 More Structures \& Shapes

|B Chemistry - Revision Notes
www.exampaperspractice.co.uk

14.1.1 Covalent Bonds

Sigma Bonds

Bond overlapin covalent bonds

- A single covalent bond is formed when two no nmetals combine
- Each atom that combines has an atomic orbital containing a single unpaired electron
- When a covalent bond is formed, the atomic orbitals overlap to form a combined orbital containing two electrons
- This new orbital is called the molecular orbital
- The greater the atomic orbital overlap, the stronger the bond
- Sigma (σ) bonds are formed from the head-on/end-to-end overlap of atomic orbitals
- The electrondensity is concentrated between the two nuclei
- S orbitals overlap this way as well as p to p, and s with p orbitals

Sigma orbitals can be formed from the end-on overlap of s orbitals
© 2024 Exam Papers Practice

Hydrogen fluoride has sigma bonds between s and p orbitals

p ATOMIC ORBITALS

MOLECULAR б ORBITAL IN FLUORIDE

Fluorine has sigma bonds between p orbitals

- The electron density in a σ bond is symmetrical about a line joining the nuclei of the atoms forming the bond
- The pair of electrons is found between the nuclei of the two atoms
- The electrostatic attraction between the electrons and nucleibonds the atoms to eachother

ExamPapers Practice

Pi Bonds

π bonds

- $\operatorname{Pi}(\pi)$ bonds are formed from the sideways overlap of adjacent p orbitals
- The two lo bes that make up the π bond lie above and below the plane of the σ bond
- This maximises overlap of the p orbitals
- A single π bond is drawn as two electronclouds one arising fromeach lobe of the porbitals
- The two clouds of electrons in a π bond represent one bond containing two electrons

π orbitals are formed by the end-on overlap of p orbitals

Examples of sigma \& pi bonds

Hydrogen

- The hydro gen atom has only one s orbital
- The s orbitals of the two hydro gen ato ms will overlap to form a obond

Direct overlap of the 1s orbitals of the hydrogen atoms results in the formation of a σ bond

Ethene

- Each carbon atom uses three of its four electrons to formobonds
- Two obonds are formed with the hydro gen atoms
- One σ bond is formed with the othercarbon atom
- The fourth electron from each carbon atom occupies a porbital which overlaps sideways with another p orbital on the other carbon atom to form a π bond
- This means that the $C-C$ is a double bond: one σ and one π bond

Overlap of the porbitals results in the forming of a π bond in ethene
Exam Papers Practice
© 2024 Exam Papers Practice

Each carbon atom in ethene forms two sigma bonds with hydrogen atoms and one σ bond with another carbon atom. The fourth electron is used to form a bond between the two carbon atoms

Ethyne

- This molecule contains a triple bond formed fromtwo π bonds (at right angles to each other) and one σ bond
- Each carbonatomuses two of its four electrons to formobonds
- One σ bond is formed with the hydrogen atom
- One obond is formed with the other carbon atom
- Two electrons are used to form two π bonds with the other carbon atom
© 2024 Exam Papers Practice

Ethyne has a triple bond formed from two π bonds and one σ bond between the two carbon atoms

Predicting the Type of Bonds

- Whethersigma (σ) orpi (π) bonds are formed can be predicted byconsideration of the combination of atomic orbitals

Worked example

What type of molecular orbitals are found in nitro gen, N_{2}, and hydro gen cyanide, HCN ?

Answer

- Nitro gen contains a triple bond and a lone pair on each nitrogen atom
- Nitro gen atoms have the electronic configuration $1 s^{2} 2 s^{2} 2 p^{3}$
- The triple bond is formed from a $\boldsymbol{\sigma}$ bond and the overlap of two sets of porbitals on the nitro gen atoms to form two π bonds
- These π bonds are at right angles to each other

The triple bond is formed from two π bonds and one σ bond

- Hydrogen cyanide contains a triple bond
- One obond is formed between the H and C atom

Exam Papers Practice

- A second σ bond is formed between the C and N atom
- The remaining two sets of porbitals of nitro gen and carb on will overlap to form two π bonds at right angles to each other

© 2024 Exam Papers Practice

14.1.2 More Lewis Structures

Octet Rule Exceptions

Incomplete octets

- We have seen previously that for elements below atomic number20 the octet rule states that the atoms tryto achieve 8 electrons in theirvalence shells, so they have the same electron configuration as a noble gas
- However, there are some elements that are exceptions to the octet rule, such a H, Li, Be, B and A/
- H can achieve a stable arrangement by gaining an electron to become ls^{2}, the same structure as the noble gas helium
- Lidoes the same, but losing an electron and going from $1 s^{2} 2 s^{1}$ to $1 s^{2}$ to become a Li+ion
- Be from group 2, has two valence electrons and forms stable compounds with just four electrons in the valence shell
- B and Al in group 13 have 3 valence electrons and can form stable compounds with only 6 valence electrons

Table showing examples of incomplete octets

Molecule	Total number of valence electrons	Lewis structure
BeCl_{2}	$\mathrm{Be}+2 \mathrm{Cl}=$ $2+(2 \times 7)=16$	$: \ddot{\mathrm{Cl}: \mathrm{Be}: \ddot{\mathrm{C}}:}$
BF_{3}	$\mathrm{B}+3 \mathrm{~F}=$ $3+(3 \times 7)=24$	$: \ddot{\mathrm{F}}: \because: \ddot{\mathrm{B}}:$
$: \ddot{\mathrm{F}}:$		

Expansion of the octet

- Elements in period 3 and above have the possibility of having more than eight electrons in their valence shell
- This is because there is a d-subshell present which can accommodate additional pairs of electrons
- This is known as the expansion of the octet
- The concept explains why structures such as $\mathrm{PC} / 5$ and SF_{6} exist, which have 10 and 12 bonding pairs of electrons respectively, around the central atom

Page 8 of 20

More Lewis Structures

Five electron pairs

Phosphorus pentachloride, PCl_{5}

- An example of a molecule with five bonding electron pairs is phosphorus pentachloride, PCI
- The total number of valence electrons is $=\mathrm{P}+5 \mathrm{Cl}=5+(5 \times 7)=40$
- The number of bonding pairs is 5 , which accounts for 10 electrons
- The remaining 30 electrons would be 15 lone pairs, so that each CI has 3 lone pairs
- The completed Lewis diagram looks like this:

Lewis diagram forPCl5

Sulfur tetrafluoride, SF_{4}

- The total number of valence electrons is $=S+4 F=6+(4 \times 7)=34$
- The number of bonding pairs is 4 , which accounts for 8 electrons
- The remaining 26 electrons would be 13 lone pairs
- Fluorine cannot expand the octet so each fluorine would accommodate 3 lone pairs, accounting for24 electrons, leaving one lone pair on the sulfur (sulfur has expanded the octet)
- The completed Lewis diagram looks like this:

Lewis diagramforSF ${ }_{4}$

Chlorine trifluoride, ClF_{3}

- The total number of valence electrons is $=\mathrm{Cl}+3 \mathrm{~F}=7+(3 \times 7)=28$
- The number of bonding pairs is 3 , which accounts for 6 electrons
- The remaining 22 electrons would be 11 lo ne pairs
- Fluorine cannot expand the octet so each fluorine would accommodate 3 lone pairs, accounting for 18 electrons, leaving two lone pairs on the chlorine
- The completed Lewis diagram looks like this:

Lewis diagramfor ClF_{3}

Triiodide ion, $\mathrm{I}_{3}-$

- The total number of valence electrons is $=3 /+$ the negative charge $=(3 \times 7)+1=22$
- The number of bonding pairs is 2 , which accounts for 4 electrons
- The remaining 18 electrons would be 9 lone pairs
- lodine would accommodate 3 lone pairs, accounting for 12 electrons, leaving three lone pairs on the centraliodine
- The completed Lewis diagram looks like this:

Lewis diagram forlz-

Six electron pairs

CopSulfur hexafluoride, SF_{6}

- An example of a molecule with sixbonding electron pairs is sulfurhexafluo ride, SF_{6}
- The total number of valence electrons is $=S+6 F=6+(6 \times 7)=48$
- The number of bonding pairs is 6 , which accounts for 12 electrons
- The remaining 36 electrons would be 18 lone pairs, so that each F has 3 lo ne pairs, accounting for all electrons and no lone pairs
- The completed Lewis diagram looks like this:

Lewis diagram for SF $_{6}$

Bromine pentafluoride, BrF_{5}

- The total number of valence electrons is $=\mathrm{Br}+5 \mathrm{~F}=7+(5 \times 7)=42$
- The number of bonding pairs is 5 , which accounts for 10 electrons
- The remaining 32 electrons would be 16 lo ne pairs
- Fluorine cannot expand the octet so each fluorine would accommodate 3 lone pairs, accounting for30 electrons, leaving one lone pairs on the bromine
- The completed Lewis diagram looks like this:

Lewis diagram for BrF_{5}

Xenontetrafluoride, XeF_{4}

-T The total number of valence electrons is $=X e+4 F=8+(4 \times 7)=36$

- The number of bonding pairs is 4 , which accounts for 8 electrons
- The remaining 28 electrons would be 14 lo ne pairs
- Each fluorine would accommodate 3 lone pairs, accounting for 24 electrons, leaving two lone pairs on the xenon
- The completed Lewis diagram looks like this:

Lewis diagram for XeF_{4}

14.1.3 Further VSEPR Theory

Further VSEPR Theory

Revisiting Valence Shell Electron Pair Repulsion Theory (VSEPR)

- When an atom forms a covalent bond with another atom, the electrons in the different bonds and the non-bonding electrons in the outer shell all behave as negatively charged clouds and repel each other
- In orderto minimise this repulsion, all the outer shell electrons spread out as far apart in space as possible
- Molecular shapes and the angles between bonds can be predicted by the valence shellelectron pair repulsion theory known by the abbreviation VSEPR theory
- VSEPR theoryconsists of three basic rules:

1. All electron pairs and all lone pairs arrange themselves as far apart in space as is possible.
2. Lone pairs repel more strongly than bonding pairs
3. Multiple bonds behave like single bonds

- These three rules can be used to predict the shape of any covalent molecule orion, and the angles between the bonds
- The regions of negative cloud charge are known as domains and can have one, two or three pairs electrons

Molecular geomet ry versus domain geometry

- It is important to distinguish between molecular geometry and domain geometry in exam questions
- Molecular geometryrefers to the shape of the molecules based on the relative orientation of the ato ms
- Do main geo metry refers to the relative orientatio n of all the bonding and lone pairs of electrons
- The Lewis structure for water enables us to see that there are four electron pairs around the oxygen so the domain geometry is tetrahedral
- However, the molecular geometryshows us there are two angled bonds so the shape is bent, angular, bent linear orV-shaped (when viewed upside down)

LEWIS STRUCTURE

MOLECULAR SHAPE

Diagram showing the Lewis structure of water and molecular shape from which the domain and molecular geometries may be determined

Five electron domains
Table showing the four molecular geometries associated with five electron do mains

Exam Papers Practice
© 2024 Exam Papers Practice

Exam Papers Practice

Domain geometry	Bonding pairs	Lone pairs	Molecular geometry	Shape example
Trigonal bipyramid	5	0	Trigonal bipyramid	
Trigonal bipyramid	4	1	See saw	
Trigonal bipyramid	3	2	T-shape	
Trigonal bipyramid	2	3	Linear	

*Trigo nal or triangular may be used

- Notice that PCl_{5} is a symmetrical molecule so the electron cloud charge is evenly spread
- This means that it will be a non-polarmolecule as any dipoles from the P-Cl bonds would be cancelled out
- $\mathrm{SF}_{4}, \mathrm{CIF}_{3}$ are asymmetrical molecules having one ortwo lone pairs on one side of the central axis making the overall molecule polar

Sixelectron domains

Table sho wing the three molecular geometries associated with six electron domains

Exam Papers Practice

Domain geometry	Bonding pairs	Lone pairs	Molecular geometry	Shape example
Octahedral	6	0	Octahedral	
Octahedral	5	1	Square based pyramid	
Octahedral	4	2	Square planar	

- SF_{6} is a symmetric al molecule so the electron cloud charge is evenly spread with 90° between the bonds
- This means that it will be a non-polar molecule as any dipoles from the S-F bo nds would be cancelled out
- XeF_{4} is also non-polar despite having two lone pairs.
- The bonding pairs are at 90° to the plane and the lone pairs are at 180°
- The lone pairs are arranged above and below the square plane resulting in an even distribution of electron cloud charge
- BrF_{5} is asymmetric al having a lone pair at the base of the pyramid making the overall molecule polar

Worked example

What is the domain geometry, molecular geometry and F -Xe-F bond angle of xenon difluoride, XeF_{2} ?

Answer

- Count the valence electrons $=\mathrm{Xe}+2 \mathrm{~F}=8+(2 \times 7)=22$
- There are two bonding pairs, accounting for 4 electrons, so 18 electrons remain
- Each fluo rine should have 3 lone pairs, accounting for 6 pairs or 12 electrons, which leaves 3 lone pairs on the xenon
- Xenon therefore has 2 bonding pairs and 3 lone pairs making its domain geometry trigonal bipyramid and its molecular geometrylinear
- The bond angle will be $18 \mathbf{0}^{\circ}$ (having the same structure as the triio dide ion)

14.1.4 Formal Charge

Formal Charge

- Alimitation of the model of covalent bonding is that when drawing Lewis structures for molecules, it is sometimes possible to come up with more than one structure while still obeying the octet rule
- This leads to the problem of deciding which structure is appropriate and is consistent with other information such as spectroscopic data on bond lengths and electron density
- One appro ach to determining which is the preferred structure is to determine the formal charge (FC) of all the atoms present in the molecule
- It is a kind of electronic book keeping involving the bonding, non-bonding and valence electrons
- Formal charge is described as the charge assigned to an atomin a molecule, assuming that all the electrons in the bonds are shared equallybetween atoms, regardless of differences in electronegativity
- The formula for calculating FC is

FC=(number of valence electrons) - $1 / 2$ (number of bonding electrons) - (number of non-bonding electrons)
or
$F C=V-1 / 2 B-N$

- The Lewis structure which is preferred is the one which:
- the difference in FC of the atoms is closest to zero
- has negative charges located on the most electronegative atoms
- The process of drawing a Lewis structure has been covered previously, but here is a reminder of how to draw the Lewis structure of tetrachloromethane, CCl_{4},

- To work our the formal charge of the C and Cl ato ms in the structure simply apply the FC formula:

$$
\text { FC for carbon }=(4)-1 / 2(8)-0=0
$$

FC for chlo rine $=(7)-1 / 2(2)-6=0$

- Notice that formal charge is calculated for one of each type of atom and does not count the to tal number of ato ms in the molecule

Worked example

What is the formal charge on boron in the $\mathrm{BH}_{4}{ }^{-}$ion?

Answer

- Boron is a group 13 element, so has 3 valence electrons. Hydrogen has one valence electron and the charge on the ion is -1 , so there are 8 electrons in the diagram. The Lewis structure is therefore:

Lewis structure of $\mathrm{BH}_{4}{ }^{-}$

- The number of bonded electrons is 8 and the number of non-bonded electrons is zero. So the formal charge on B is:

$$
F C(B)=(3)-1 / 2(8)-0=-1
$$

Applying Formal Charge

- It is possible to draw three resonance structures for sulfur dioxide, SO_{2} :

The three resonance structures of sulfur dioxide

- The first structure is an illustration of the expansion of the octet as the sulfur has 10 electrons around it
- Formal charge can be used to decide which of the Lewis structures is preferred
- The FC on the first structure is as follows:

$$
\begin{gathered}
\text { FC on sulfur }=(6)-1 / 2(8)-(2)=0 \\
\text { FC on oxygen }=(6)-1 / 2(4)-(4)=0 \\
\text { Difference in } F C=\Delta F C=F_{\text {max }}-F C_{\text {min }}=0
\end{gathered}
$$

- The FC on the second (and third) structures is as follows:

$$
\text { FC on sulfur }=(6)-1 / 2(6)-(2)=+1
$$

FC on left side oxygen $=(6)-1 / 2(2)-(6)=-1$
FC on right side oxygen $=(6)-1 / 2(4)-(4)=0$
Difference in $F C=\triangle F C=F C_{\text {max }}-F C_{\text {min }}=2$

Worked example

What is the formal charge on the two resonance structures shown?

Resonance structures of carbon dioxide
Deduce which is the preferred structure.

Exam Papers Practice

Answer

Structurel

FC on carbon $=(4)-1 / 2(8)-(0)=0$
FC on oxygen $=(6)-1 / 2(4)-(4)=0$
Difference in $F C=\Delta F C=F C_{\text {max }}-F_{\text {min }}=0$
Structure II
FC on carbon $=(4)-1 / 2(8)-(0)=0$
FC onleft oxygen $=(6)-1 / 2(6)-(2)=+1$
FC on right oxygen $=(6)-1 / 2(2)-(6)=-1$
Difference in $F C=\Delta F C=F C_{\text {max }}-F C_{\text {min }}=2$
Structure lis the preferred structure as the difference is zero

Exam Papers Practice
© 2024 Exam Papers Practice

