

13.1 Transition Metals

Mark Schemes

Exam Papers Practice

To be used by all students preparing for DP IB Chemistry HL Students of other boards may also find this useful

1

The correct answer is **D** because:

- The charge on Fe in complex I can be found as follows:
 - \circ Fe + (6 x H₂O) = +3
 - \circ Fe + (6 x 0) = +3
 - \circ Fe=+3
- The charge on Fe in complex II can be found as follows:
 - \circ Fe + (5 x H₂O) + CN = +2
 - \circ Fe + (5 x 0) + (-1) = +2
 - \circ Fe-1=+2
 - \circ Fe = +3
- The charge on Fe in complex III can be found as follows:
 - \circ Fe + (6xCN) = -3
 - \circ Fe+(6x-1)=-3
 - \circ Fe-6=-3
 - \circ Fe = +3

A, B & C are incorrect as

All three complexes contain iron with an oxidation state of +3

Exam Papers Practice

The correct answer is A because:

• Zn is not a transition metal so does not form coloured compounds

B, C & D are incorrect as

the metals in these compounds are transition metals so will form coloured compounds

3

The correct answer is **B** because:

 The spectrochemical series arranges ligands in order of increasing energy separation between the two sets of d orbitals

A is incorrect	the spectrochemical series does not arrange ligands in terms of separation
as	between the p and d orbitals
Cis	C/~ will absorb longer wavelengths of light
incorrect	than NH ₃ (corresponding to the red end of
as	the spectrum).
	However the colour of a complex depends
	on the wavelengths of light transmitted.
	These are the complementary colours to
	those absorbed so C/- is more likely to
	appear blue.
Dis	colour depends on the central transition
incorrect	metal ion present as well as the ligand in
as	the complex pers Practic

The correct answer is C because:

- The copper(II) will form a hexaaqua complex in solution with water as ligands
- As ammonia is a stronger ligand it will displace some of the water ligands in the hexaaqua complex

A is incorrect as	the d orbitals in the copper ion are already split as it has formed a complex ion with water ligands
B is incorrect as	the would be a greater splitting of the d- orbitals as ammonia is higher in the spectrochemical series than water
D is incorrect as	the colour would not fade but changes shade as ammonia ligands absorb slightly different wavelengths of light compared to water

- Cobalt accepts lone pairs from the ligands hence acting as a Lewis acid
- The complex is octahedral having 90 degree bond angles
- cobalt has an oxidation number of +3:
 - \circ Co + (NH₃ x 5) + C/ $^-$ = +2
 - o Co+(0x5)+(-1)=+20ers Practice
 - $\circ Co 1 = +2$
 - \circ Co = +3
 - o Hence, statement II is incorrect

A, C & D are incorrect as	these include statement II