

12.1 Electrons in Atoms

Question Paper

Exam Papers Practice

To be used by all students preparing for DP IB Chemistry HL Students of other boards may also find this useful

Question 1

Which of the following calculations gives the correct calculation to find the energy, in kJ, for a photon of blue light given the wavelength $\lambda = 550$ nm.

 $h = 6.626 \times 10^{-34} \text{J s}; c = 2.988 \times 10^8 \,\text{m s}^{-1}$

A.
$$\frac{6.626 \times 10^{-34} \times 2.988 \times 10^{8}}{550 \times 10^{-9}}$$

B.
$$\frac{6.626 \times 10^{-34} \times 2.988 \times 10^{8}}{550 \times 1000}$$

C.
$$\frac{6.626 \times 10^{-34} \times 2.988 \times 10^{8}}{550 \times 10^{-9} \times 1000}$$

D.
$$\frac{6.626 \times 10^{-34} \times 2.988 \times 10^{8}}{2.988 \times 10^{8} \times 1000}$$

[1 mark]

Question 2

Successive ionisation energies for an element, Y, are shown in the table below.

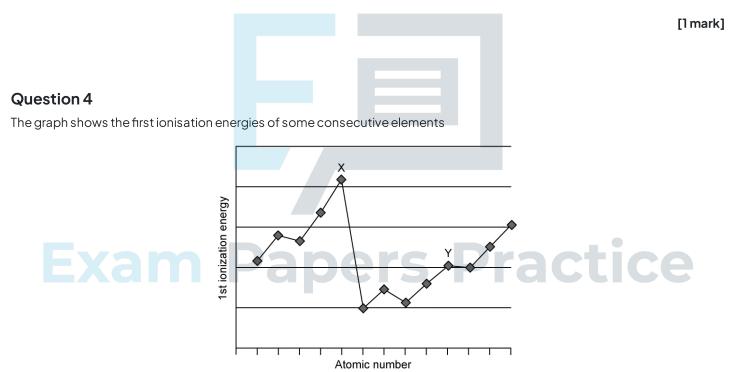
Electrons removed	lst	2nd	3rd	4th	5th
lonisation energy / kJ mol ⁻¹	736	1450	7740	10500	13600

What is the most likely formula for the ion of Y?

C. Y³⁺

D. Y⁴⁺

[1 mark]


Question 3

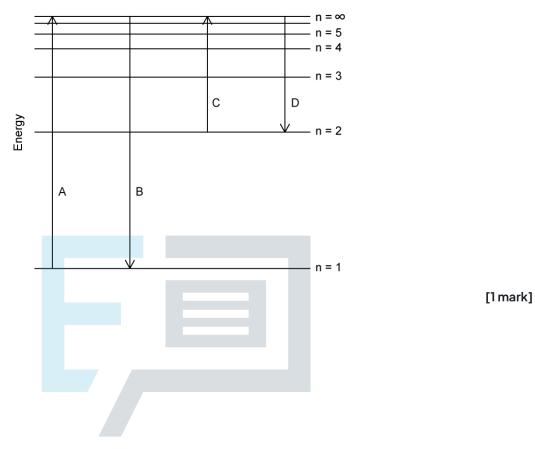
Values for the successive ionisation energies for an unknown element are given in the table below.

	Second ionisation energy / kJ mol ⁻¹		Fourth ionisation energy / kJ mol ⁻¹	
420	3600	4400	5900	

In which group of the periodic table would the unknown element be found?

- A. 1
- B. 2
- C.13
- D.14

Which statement is correct?


- A. Y is in group 13
- B. Y is in group 10
- C. X is in group 15
- D. X is in group 18

[1 mark]

Question 5

Which transition on the diagram corresponds to the ionisation of hydrogen in the ground state?

Exam Papers Practice