

Exam Papers Practice

Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark schemes
Suitable for all boards
Designed to test your ability and thoroughly prepare you

11.2 Synoptic Data Handling \& Graphical Skills

|B Chemistry - Revision Notes
www.exampaperspractice.co.uk

11.2.1 Recording Data

Qualitative \& Quantitative data

- When recording results of experiment, both quantitative and qualitative data should be obtained
- Quantitative data is obtained frommeasurements whereas qualitative data is non-numerical information that comes from observations
- Quantitative data is always associated with randomerrors/uncertainties, determined by the apparatus, and by human limitations such as reaction time
- Where there are several items of data you should record your data in a table with appro priate headings and units:

Dat a Table showing headings and units

Measurement	$\begin{aligned} & {\left[\mathrm{CaCO}_{3}\right]} \\ & \left(\mathrm{mol} \mathrm{dm}^{-3}\right) \end{aligned}$	$\left[\mathrm{Cl}^{-}\right]$ $\left(\mathrm{mol} \mathrm{dm}^{-3}\right)$	$\left[\mathrm{H}^{+}\right]$ $\left(\mathrm{mol} \mathrm{dm}^{-3}\right)$	Initial rate of reaction ($\mathrm{mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}$)
1	0.0250	0.0125	0.0125	4.38×10^{-6}
2	0.0375	0.0125	0.0125	6.63×10^{-6}
3	0.00625	0.0250	0.0250	C 2.19×10^{-6}

© 2024 Exam Papers Practice

Uncertainties

- Uncertainties are the same as randomerrors
- Uncertainties express the confidence to which the measurement can be taken
- Treatment of uncertainties depends on the type of instrument used

Using analogue instruments

- Any instruments that have an analogue scale, the uncertainty is taken as half the smallest division on the scale
- Forexample,
- A thermometer that reads to $1^{\circ} \mathrm{C}$, the uncertainty wo uld be $\pm 0.5^{\circ} \mathrm{C}$
- A burette that reads to 0.10 mL , the uncertainty would be $\pm 0.05 \mathrm{~mL}$

Using digital instruments

- Any instruments that have a digit al scale, the uncertainty is taken as the smallest division on the scale
- Forexample,
- An electronic balance that reads to 0.01 g , the uncertainty would be $\pm 0.01 \mathrm{~g}$

Other uncertainties

- Other sources of uncertainty can arise where the judgement of the experimenter is needed to determine a changing property
- Forexample,
- Judging the end point of a titration bylooking at the colour of the indicator
- Controlling a stopwatch in a rate of reaction experiment
- Deciding when to extinguish the flame in an ent halpy of combustion experiment
- These uncertainties are very difficult to quantify, but they should be commented on as a source of errorin an evaluation

- Exam Tip

Notice that when recording the measurement you should always record it to the same level of precision as the uncertainty. The measurement cannot be anymore orless precise than the uncertainty. Even though a burette reads to 0.1 mL , it must be recorded as 0.10 mL , so the last digit is always a 0 ora 5

Page 2 of 17

11.2.2 Processing Errors

Types of Errors

- Anerror is the difference between a value or quantity obtained in an experiment and an accepted or literature value for an experiment
- There are two types of errors in experiments, randomerrors and systematic errors

Random Errors

- When you are reading an ins trument and estimate the final digit, there is an equal chance that you may read it slightly to o high or slightly to o low
- This is a randomerror
- Randomerrors are can be affected by:
- How easily the instrument orscale is to read
- The personreading the scale poorly
- Changes in the environment, for example
- fluctuations in the temperature of the lab
- air currents in the room
- Randomerrors will pull a result away from an accepted value in either direction (either too high or toolow)

Systematic Errors

- Systematic errors are errors that occur as a result of a faulty or poorly designed experimental procedure
- Systematic errors will always pull the result away from the accepted value in the same direction (always too high or always to o low)
- For example,Practice
- If you forget to zero an electronic balance (using the tare button) the mass weighings will always be higher than theyshould be
- If you don't read the volume in a burette at eye level, the volumes will always be smaller than they should be due to a parallax error
- If you fail to keep a cap on a spirit burner in a calo rimetry experiment, the alcohol will evaporate and give you a larger mass loss

Exam Papers Practice
© 2024 Exam Papers Practice

Exam Papers Practice
© 2024 Exam Papers Practice

Propagation of Errors

- Propagation of errors means the processing of errors so they are reflected appro priately in a final calculation based on experiment results
- There are a number of rules and processes to follow, beginning with percentage uncertainty

Percentage Uncertainties

- Percentage uncertainties are a way to compare the significance of an absolute uncertainty on a measurement
- This is not to be confused with percent age error, which is a comparis on of a result to a literature value
- The formula forcalculating percentage uncertainty is as follows:

percentage uncertainty $=\frac{\text { absolute uncertainty }}{\text { measured value }} \times 100 \%$

- Some examples of percentage uncertaintycalculations forcommon laboratory apparatus:

Copyright

$$
\begin{aligned}
& \% \text { UNCERTAINTY }= \\
& \frac{ \pm 0.08}{25.00} \times 100=0.32 \%
\end{aligned}
$$

 Calculating Percentage Uncertainty

Adding or subtracting measurements

- When you are adding or subtracting two measurements then you add to gether the absolute measurement uncertainties
- Forexample,
- Using a balance to measure the initial and final mass of a container
- Using a thermometerfor the measurement of the temperature at the start and the end
- Using a burette to find the initial reading and final reading
- In all these examples yo u have to read the instrument twice to obtain the quantity
- If each you time you read the instrument the measurement is 'out' by the stated uncertainty, then your final quantity is potentially 'out' by twice the uncertainty

Multiplying or dividing meas urements

- When you multiply ordivide experimental measurements then you add to gether the percentage uncertainties
- Youcan then calculate the absolute uncertainty from the sum of the percentage uncertainties

(9) Exam Tip

If you are multiplying ordividing data you should quote the answer to the same number of significant figures as the least precise data.

When you add or subtract data you should use the same number of decimal places as the least precise data value

Exam Papers Practice
© 2024 Exam Papers Practice

11.2.3 Reducing the Impact of Errors

Reducing Errors

- Randomerrors canbe reduced byrepeated trials and measurements
- Multiple measurements when averaged will reduce the impact of a rand omerror on the average
- The more readings you have the lower the possibility that a random error will skew the results
- If you spot a randomerror in a data table then youcan omit it in the calculation of an average
- For example, in a tit rationyou can leave out results that are not concord ant when finding the average titre:

Calculating the average volume delivered in a titration should not include non-concordant volumes. Run 3 (and the Rough run) is omitted from the calculation of the average volume delivered

- Systematic errors cannot be reduced byrepetition
- Systematic errors can only be reduced by changing the procedure and making sure you are using the instruments correctly
- If you cannot activelyreduce systematic errors you must still try to identify them and comment on them in your evaluation

Impact of Errors

- A skill that is very important in data processing is the ability to discuss the impact of different types of errors on an experimental conclusion
- This is an integral part of the Internal Assessment, but it can also be examined in the written exam papers
- Youshould always evaluate randomerrors and systematic errors in an investigation
- This includes assessing the relative impact of errors, for example:
- Whether a particular error has a major or minoreffect on the final result
- Which errors produce the largestimpact on a final result

You should be able to state what the impact would be of not using a draught shield in a simple
combustion calorimetry experiment

Page 10 of 17
For more help visit our website www.exampaperspractice.co.uk

Accuracy \& Precision

- Accuracy is how close you are to an accepted value
- Precision is a measure of how many decimal places you can express your results to
- Imagine you are shooting at a target: the following results show the difference between these concepts

- In practical chemistryterms, if you have a literature value for a final calculation, then it is very easy to compare how close you got to the literature value, in otherwords how accurate you were
- For example in enthalpy of combustion experiments, did youget close to the Data Book value?
- Sometimes you can control precision by changing instrument
- For example if yo u change from a two decimal place to three decimal place balance, you are making your measurements more precise

. Worked example

Which of the following procedures could be used to reduce the rand om uncertainty while performing a titration?
A. Changing the burette
B. Reading the burette at eye level to the meniscus
C. Repeating the titration
D. Changing the indicatorforthe titration

Answer

The correct option is \mathbf{C}.
Rand om errors can be reduced by repetition. All the other procedures would only affect systematic errors.

11.2.4 Percentage Error

Percentage Error

- Percent age error is used to express the difference between a final calculated answer and an accepted orliterature value
- It is calculated using the following formula

percentage error $=\frac{\text { accepted value }- \text { experimental value }}{\text { accepted value }} \times 100 \%$

- Youshould be able to comment on anydifferences between the experimental and literature values

Worked example

1.023 g of propan-1-ol $\left(M=60.11 \mathrm{~g} \mathrm{~mol}^{-1}\right)$ was burned in a spirit burner and used to heat 200 g of water in a copper calorimeter. The temperature of the water rose by $30^{\circ} \mathrm{C}$.

1. Calculate the enthalpy of combustion of propan-1-ol using this data.
2. The literature value for this enthalpy change is $-2021 \mathrm{~kJ} \mathrm{~mol}^{-1}$. Calculate the percentage error and comment on yourfindings

Answer 1:
Step 1: Calculateq

$$
\mathrm{q}=200 \mathrm{~g} \times 4.18 \mathrm{~J} \mathrm{~g}^{-1} \mathrm{~K}^{-1} \times 30 \mathrm{~K}=-25080 \mathrm{~J}
$$

Step 2: Calculate the amount of propan-1-ol burned
moles $=$ mass \div molarmass $=1.023 \mathrm{~g} \div 60.11 \mathrm{~g} \mathrm{~mol}^{-1}=0.01702 \mathrm{~mol}$
Step 3: Calculate $\Delta \mathrm{H}$
$\Delta \mathrm{H}=\mathrm{q} \div \mathrm{n}=-25080 \mathrm{~J} \div 0.01702 \mathrm{~mol}=-1473560 \mathrm{~J}=-1474 \mathrm{~kJ}=-1.5 \times 10^{3} \mathrm{~kJ}$

Answer 2:

Using the formula

percentage error $=\frac{\text { accepted value }- \text { experimental value }}{\text { accepted value }} \times 100 \%$

$$
\text { percentage error }=\frac{2021-1500}{2021} \times 100 \%=\mathbf{2 5 \%}
$$

Heat losses are likelyto be the largest source of error in this experiment

Exam
Papers Practice
© 2024 Exam Papers Practice

Exam Papers Practice

11.2.5 Drawing Graphs

Drawing Graphs

General guidance on drawing graphs

- Graphs need to have:
- Cleartitle
- Labelled axes
- Units on the axes
- Appro priate linear scales without any jumps
- This means the plotted graph must occupy at least half ormore of the sheet or grid
- A rough rule of thumb is that if you can double the scale and still fit all the points on, then your scale is not appro priate
- Clearlyshown data points
- The most common convention is to use small crosses to show the data points

Graph of concentration versus time

Exam Papers Practice
Copyright
© 2024 Exam Papers Practice

Graphs must shows appropriate scales, labelling and units. The independent variable usually goes on the x-axis and the depend ent variable onthe y-axis

- Remember the independent variable is the one you control ormanipulate and the dependent variable is the one that changes as a result of your manipulation
- Always draw data points in pencil as it makes it easier to make corrections and adjustments

Best Fit Lines

- Students often confuse the term lines of best fit with straight lines
- Lines of best fit can be straight lines or curves (just like the example above) and:
- Theyshow the trend of the data
- It does not have to go through all the points, but shows the general trend
- Theymust go through the majority of the points
- Where the data is scattered the points should be evenly distributed on either side of the best fit line
- Sometimes the best fit line has to be extended to find a value from a graph
- This is called extrapolation as this example shows from a temperature correction graph in a calo rimetry investigation where the cooling section is extrapolated to find the maximum temperature rise:

Extrapolation on a temperature correction graph

- Interpolation is the term used to describe the process of as suming a trend line applies between two points as this example below shows:

- Exam Tip

You will have to decide if the origin, point $(0,0)$ should be included as a data po intlf it does, it will be a good place to anchor the graph as it will be the most accurate data point

