

Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme

Suitable for all boards

Designed to test your ability and thoroughly prepare you

IB Chemistry: SL

11.1 Spectroscopic Identification

CHEMISTRY

SL

11.1 Spectroscopic Identification

Question Paper

Course	DP IB Chemistry
Section	11. Measurements & Data Processes
Topic	11.1 Spectroscopic Identification
Difficulty	Hard

EXAM PAPERS PRACTICE

Time allowed: 20

Score: /10

Percentage: /100

Question 1

The infrared spectrum below shows an unknown compound.

bond	wavenumber range/ cm ⁻¹
C-O; hydroxyl, ester	1040 – 1300
C—C; aromatic compound, alkene	1500 - 1680
C—O amide carbonyl, carboxyl ester	1640 – 1690 1670 – 1740 1710 - 1750
C≡N; nitrile C−H; alkane	2200 – 2250 2850 – 2950
N-H; amine, amide	3300 – 3500
O–H; carboxyl hydroxyl	2500 – 3000 3200 - 3600

Which compound could have produced the infrared spectrum?

Page 2 of 12

Question 2

The mass spectra of three compounds A, B and C are shown below.

Page 3 of 12

What evidence from the spectra of the three compounds A, B and C, suggests they could be isomers?

- A. all show a molecular ion peak at 74
- B. all show a molecular ion peak at 13
- C. all show a molecular ion peak at 73
- D. all show a molecular ion peak at 33

Question 3

The diagram shows an infrared spectrum of a compound.

bond	wavenumber range/ cm ⁻¹
C-O; hydroxyl, ester	1040 – 1300
C─C; aromatic compound, alkene	1500 - 1680
C—O amide carbonyl, carboxyl ester	1640 – 1690 1670 – 1740 1710 - 1750
C≡N; nitrile	2200 – 2250
C-H; alkane	2850 – 2950
N-H; amine, amide	3300 – 3500
O–H; carboxyl hydroxyl	2500 – 3000 3200 - 3600

Which compound would give this spectrum?

- A. butanoic acid
- B. butanal
- C. butan-1-ol
- D. 1-bromobutane

[1 mark]

Page 6 of 12

XAM bondAPFR	wavenumber range/ cm ⁻¹
C-O; hydroxyl, ester	1040 – 1300
C—C; aromatic compound, alkene	1500 - 1680
C—O amide	1640 – 1690
carbonyl, carboxyl	1670 – 1740
ester	1710 - 1750
C≡N; nitrile	2200 – 2250
C-H; alkane	2850 – 2950
N−H; amine, amide	3300 – 3500
O–H; carboxyl hydroxyl	2500 – 3000 3200 - 3600

Question 5

A periodic table is needed for this question

A compound XF_n is a fluoride of another halogen, X, and it is known that n > 1. The highest m/e peak in the mass spectrum of XF_n is assigned to the parent ion and comes as a single peak at m/e = 222.

Which of the following statements is **incorrect**?

A. n = 5
B. the compound could contain bromine
C. there are no isotopes of X or F
D. the compound is a fluoride of iodine

[1 mark]

EXAM PAPERS PRACTICE

Question 6

What does the 1H NMR spectrum below tell you about a molecule?

- A. There is only one isotope of hydrogen present in the molecule
- B. The molecule is a hydrocarbon
- C. There is only one hydrogen atom in the molecule
- D. There is only one hydrogen environment in the molecule

EXAM PAPERS PRACTICE

Question 7

An organic compound is analysed by mass spectrometry and infrared spectroscopy. The following data is obtained.

mass spectrometry	infrared spectroscopy
molecular ion peak at m/e = 128	sharp peak at 1720 cm ⁻¹
fragment ion peak at m/e = 15	no broad peak around 3200cm ⁻¹

bond	wavenumber range/ cm ⁻¹
C-O; hydroxyl, ester	1040 – 1300
C─C; aromatic compound, alkene	1500 - 1680
C—O amide carbonyl, carboxyl ester	1640 – 1690 1670 – 1740 1710 - 1750
C≡N; nitrile	2200 – 2250
C–H; alkane N–H; amine, amide	2850 - 2950 3300 - 3500
O–H; carboxyl hydroxyl	2500 – 3000 3200 - 3600

Which of the following compounds could be consistent with the data given?

[1 mark]

Question 8

Which molecule has an index of hydrogen deficiency (IHD) = 1?

A. C₆H₁₀
B. C₂Br₂
B. C₂Br₂

C. C₄H₉N

D. C₃H₈O

[1 mark]

Question 9

How many peaks would you expect to see in a 1H NMR spectrum of methylbenzene?

- A. 3
- B. 4
- C. 5
- D. 6

Question 10

What is the index of hydrogen deficiency (IHD) for this molecule of aspirin?

- A. 3
- B. 4
- C. 5
- D. 6

[1 mark]