

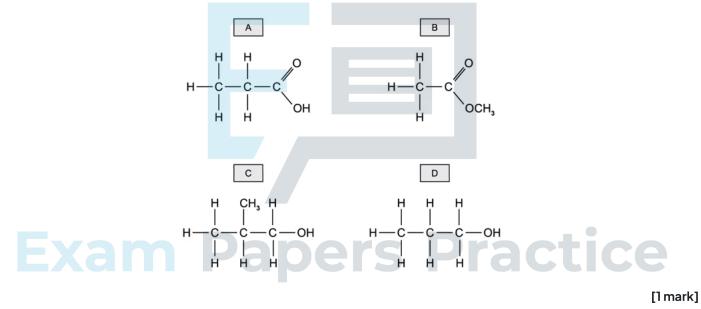
11.1 Spectroscopic Identification

Question Paper

Exam Papers Practice

To be used by all students preparing for DP IB Chemistry HL Students of other boards may also find this useful

Question 1


Which alcohol is **not** likely to have a fragment at *m*/e at 43 in its mass spectrum?

- A. (CH₃)₂CHCH₂OH
- B. CH₃CH(OH)CH₂CH₂CH₃
- C.CH₃CH₂CH₂CH₂OH
- D. CH₃CH₂CH(OH)CH₃

[1 mark]

Question 2

Which of the compounds shown below is likely to have a fragment at m/e = 45 in its mass spectrum?

Question 3

Chlorine has two isotopes 35 Cl and 37 Cl. Assuming in the molecule C₄H₆Cl₄ there is only one hydrogen and one carbon isotope, how many molecular ion peaks will be seen in its mass spectrum?

- A. 5
- B.4
- C.3
- D. 2

[1mark]

[1mark]

Question 4

Bromine exists as two isotopes ⁷⁹Br and ⁸¹Br, which are found in almost equal abundance.

Which of the following statements is correct?

- A.⁷⁹Br is more reactive than ⁸¹Br
- B. The mass spectrum of C_3H_7Br has two molecular ion peaks at 122 and 124 $\,$
- C. The atomic radius of $^{79}\mathrm{Br}$ is less than the atomic radius of $^{81}\mathrm{Br}$
- D. The first ionisation energy of ⁷⁹Br is less than the first ionisation energy of ⁸¹Br

Question 5			
Which alcohol is likely to have a fragme A. CH ₃) ₂ CHCH ₂ OH	ent ion at <i>m</i> /e = 31 in its	mass spectrum?	
B. CH ₃ CH(OH)CH ₂ CH ₂ CH ₃			
$C.CH_3CH_2CH_2C(OH)(CH_3)_2$			
D.CH ₃ CH ₂ CH(OH)CH ₃			
Exam	Pape	ers P	ractice

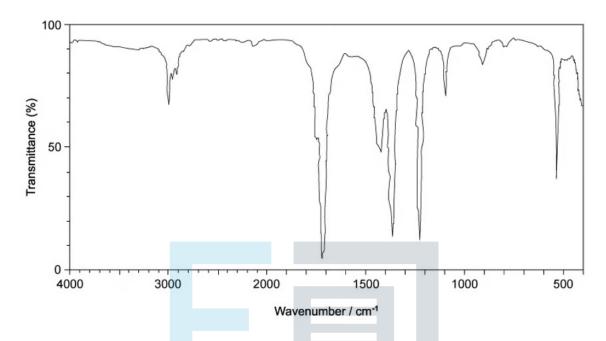
Question 6

Which pair of compounds would you expect to both have a singly charged peak at m/e = 29 in the mass spectrum?

A. propan-1-ol and propanal

B. propanal and propanone

- C. propan-2-ol and propanal
- D. propan-1-ol and propan-2-ol


[1mark]

Page 3

Question 7

The infrared spectrum of a compound is shown below.

Use the infrared absorptions, in wavenumbers, to identify the compound

bond		wavenumber range/ cm ⁻¹	
O-H (alcohol)		3750 - 3200	
C-H (alkane)		2962 - 2853	
C-H (aldehyde)		2900 - 2820 and 2775 - 2700	
C=O (aldehyde or ketone)		1740 - 1680	

Which compound is shown by the infrared spectrum?

A. propan-1-ol

B. propan-2-ol

C. propanal

D. propanone

[1mark]

Question 8

Which of the ketones listed would **not** be expected to have a peak in its mass spectrum at m/e = 57?

- A. hexan-3-one, CH₃CH₂CH₂COCH₂CH₃
- B. pentan-3-one, CH₃CH₂COCH₂CH₃
- C. 3-methylbutanone, (CH₃)₂CHCOCH₃
- D. butanone, CH₃CH₂COCH₃

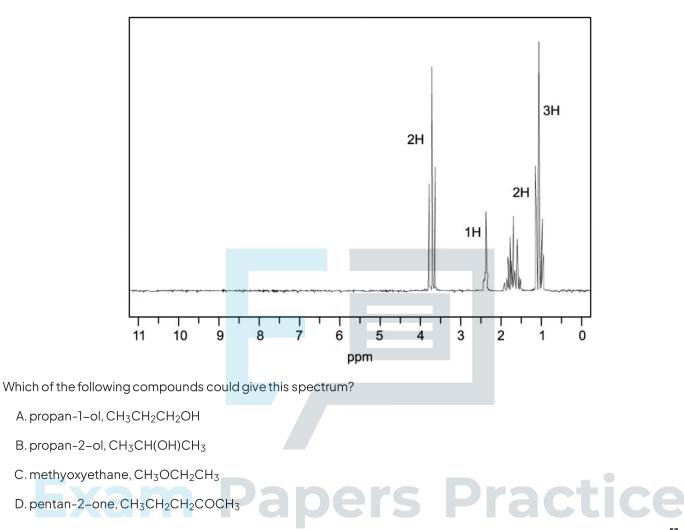
Question 9

Which of the following statements about the mass spectrum of CH_3Br is correct?

- A. There is one peak for the molecular ion with an m/e value of 44.
- B. There is one peak for the molecular ion with an m/e value of 95.
- C. The last two peaks have abundances in the ratio 3:1 and occur at m/e values of 94 and 96.
- D. The last two peaks are of equal size and occur at m/e values of 94 and 96.

[1mark]

Exam Papers Practice


[1mark]

[1mark]

Question 10

Below is a ¹H NMR spectrum for an unknown organic compound. The relative areas under the peaks are labelled

