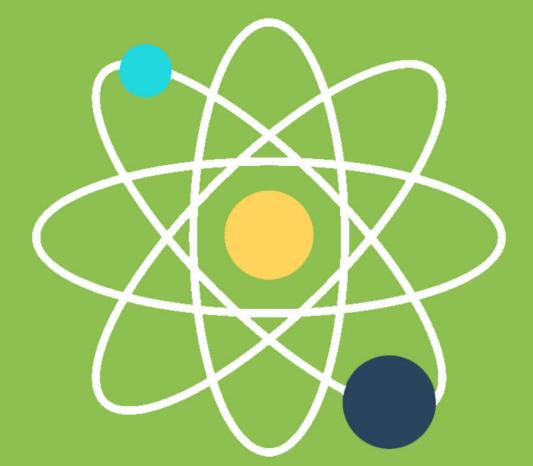


Boost your performance and confidence with these topic-based exam questions


Practice questions created by actual examiners and assessment experts

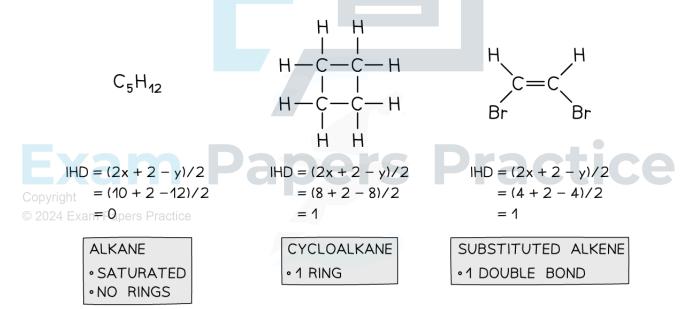
Detailed mark schemes

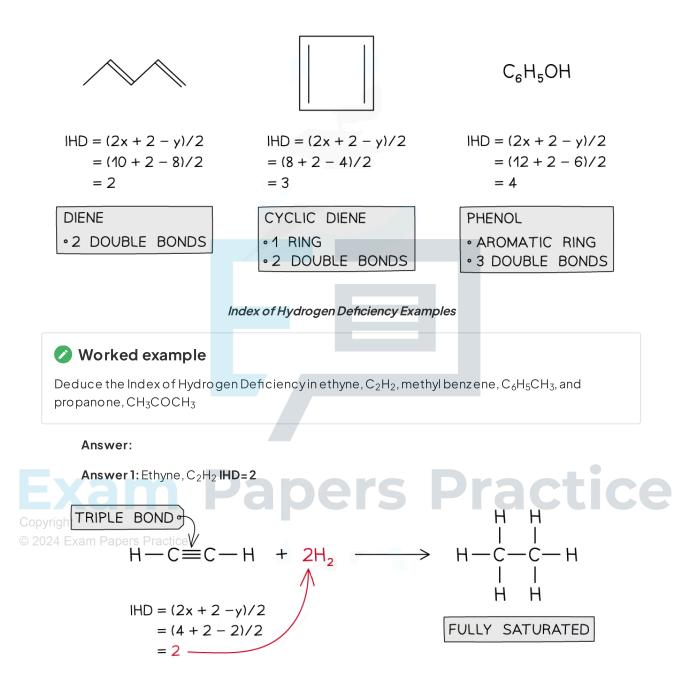
Suitable for all boards

Designed to test your ability and thoroughly prepare you

11.1 Spectroscopic Identication

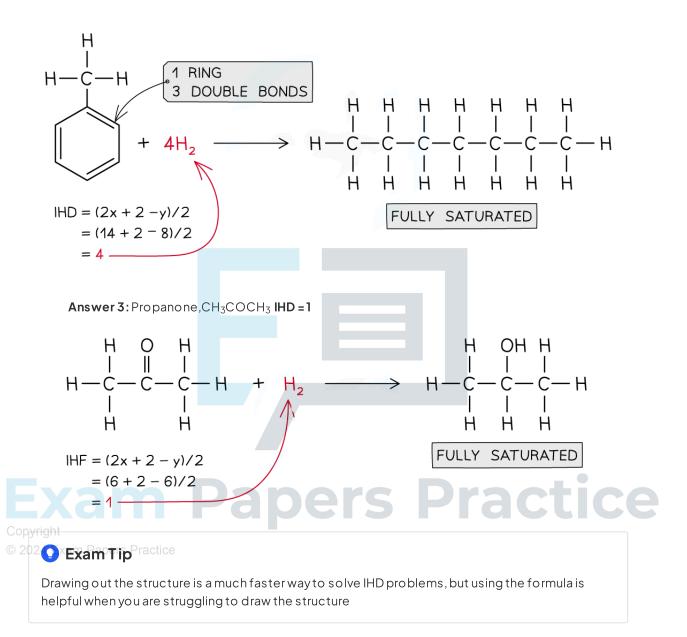
IB Chemistry - Revision Notes


www.exampaperspractice.co.uk


11.1.1 Index of Hydrogen Deficiency

Index of Hydrogen Deficiency

- The **degree of unsaturation** or **index of hydrogen deficiency** provides information about the number of double or triple bonds in a molecule
- The **IHD** is the number of hydrogen molecules, H₂, needed to convert the molecule to the corresponding saturated, non-cyclic molecule
- There are two ways to solve **IHD** problems. One way is to draw the structure and identifyrings and double and triple bonds, counting each one as an **IHD** value of 1.
- The second way is to use a formula,
 - For a compound containing C_xH_y, **IHD**=(2×+2-y)/2
 - This is a little complicated, since for the formula to work you need to:
 - ignore O and S
 - count halogens as hydrogen
 - add one C and one H for every nitrogen in the formula



Answer 2: Methylbenzene, C₆H₅CH₃, IHD=4

11.1.2 Mass Spectrometry

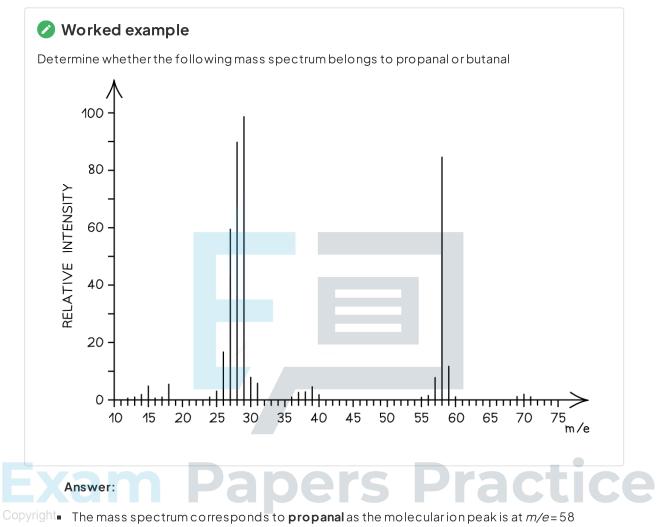
Determining Molecular Mass

- When a compound is analysed in a mass spectrometer, vaporised molecules are bombarded with a beam of high-speed electrons
- These knock off an electron from some of the molecules, creating **molecular ions**:

Electron bombardment

MOLECULE

MOLECULE⁺• + e⁻ Molecular ion


- The relative abundances of the detected ions form a **mass spectrum**: a kind of molecular fingerprint that can be identified by computer using a spectral database
- The peak with the highest *m/e* value is the molecularion (**M**⁺) peak which gives information about the **molecular mass** of the compound
- This value of m/z is equal to the **relative molecular mass** of the compound

The M+1peak

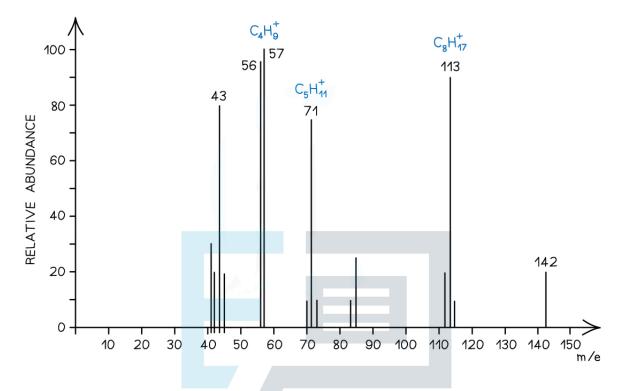
- The [M+1] peak is a smaller peak which is due to the natural abundance of the isotope carbon-13
- The height of the **[M+1]** peak for a particular ion depends on how many carbon atoms are present in that molecule; The more carbon atoms, the larger the **[M+1]** peak is
 - For example, the height of the [M+1] peak for an hexane (containing six carbon atoms) ion will
 - be greater than the height of the **[M+1]** peak of an ethane (containing two carbon atoms) ion

Copyright © 2024 Exam Papers Practice

- \odot 2024 Example panalarises from the CH₃CH₂CHO⁺ion which has a molecular mass of 58
 - Butanal arises from the CH₃CH₂CH₂CHO⁺ion which has a molecular mass of 72

Fragmentation Patterns

- The molecularion peak can be used to identify the **molecular mass** of a compound
- However, different compounds may have the same molecular mass
- To further determine the structure of the unknown compound, **fragmentation analysis** is used
- Fragments may appear due to the formation of characteristic fragments or the loss of small molecules
 - For example, a peak at 29 is due to the characteristic fragment $C_2H_5^+$
 - Loss of small molecules give rise to peaks at 18 (H $_2$ O), 28 (CO), and 44 (CO $_2$)


Alkanes

- Simple alkanes are fragmented in mass spectroscopy by breaking the C-C bonds
- *M/e* values of some of the common alkane fragments are given in the table below

_	_		
F	ragment	m/e	
	CH ₃ ⁺	15	
	$C_{2}H_{5}^{+}$	29	
Þ	C ₃ H ₇ ⁺	43	D
	C₄H ₉ ⁺	57	
	C ₅ H ⁺ ₁₁	71	
	C ₆ H ⁺ ₁₃	85	

m/evalues of Fragments Table

Mass spectrum showing fragmentation of alkanes

Halogenoalkanes

- Halogenoalkanes have often multiple peaks around the molecularion peak
- This is caused by the fact that there are different isotopes of the halogens

Alcohols

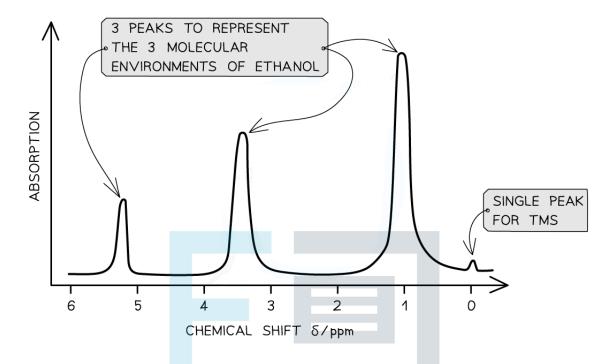
© 2024 Alcohols often tend to lose a water molecule giving rise to a peak at 18 below the molecular ion

- Another common peak is found at m/e value 31 which corresponds to the CH₂OH⁺ fragment
- For example, the mass spectrum of propan-1-ol shows that the compound has fragmented in four different ways:
 - Loss of H to form a $C_3H_7O^+$ fragment with m/e=59
 - Loss of a water molecule to form a $C_3H_6^+$ fragment with m/e=42
 - Loss of a C_2H_5 to form a CH_2OH^+ fragment with m/e=31
 - And the loss of CH_2OH to form a $C_2H_5^+$ fragment with m/e=29

11.1.3 Nuclear Magnetic Resonance Spectroscopy

How NMR works

- Nuclear Magnetic Resonance (NMR) spectroscopy is used for analysing organic compounds
- Only atoms with odd mass numbers show signals on NMR spectra and have the property of nuclear spin
- In¹H NMR, the magnetic field strengths of protons in organic compounds are measured and recorded on a spectrum
- Samples are irradiated with radio frequency energy while subjected to a strong magnetic field
- The nuclei can align themselves with or against the magnetic field
- Protons on different parts of a molecule (in different molecular environments) absorb and emit (resonate) different radio frequencies
- All samples are measured against a reference compound Tetramethylsilane (TMS)
 - TMS shows a single sharp peak on an NMR spectrum, at a value of zero
 - Sample peaks are then plotted as a 'shift' away from this reference peak
 - This gives rise to 'chemical shift' values for protons on the sample compound
 - Chemical shifts are measured in **parts per million (ppm)**


Features of a NMR spectrum

- An NMR spectrum shows the intensity of each peak against their chemical shift
- The area under each peak is proportional to the number of protons in a particular environment
- The height of each peak shows the intensity/absorption from protons

Exam Papers Practice

© 2024 Exam Papers Practice

A low resolution ¹H NMR for ethanol showing the key features of a spectrum

Exam Papers Practice

© 2024 Exam Papers Practice

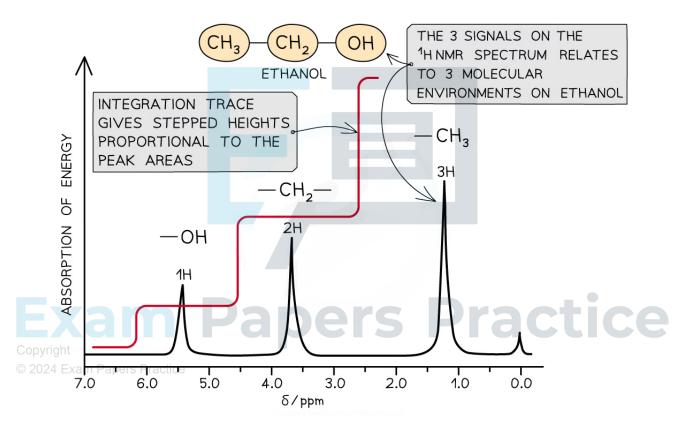
Chemical Environments

Chemical environments

- Hydrogen atoms of an organic compound are said to reside in different chemical environments
 - Eg. Methanol has the molecular formula CH₃OH
 - There are 2 environments: -CH₃ and -OH
- The hydrogen atoms in these environments will appear at 2 different chemical shifts
- Different types of protons are given their own range of chemical shifts

Aldehyde	HCOR	9.3-10.5
Alcohol	ROH	0.5-6.0
Phenol	Ar-OH	4.5-7.0
Carboxylic acid	RCOOH	9.0-13.0
Alkyl amine	R-NH-	1.0-5.0
Aryl amine	Ar-NH ₂	3.0-6.0
Amide	RCONHR	5.0-12.0
xam Pal	oers Pr	actic

Соруп

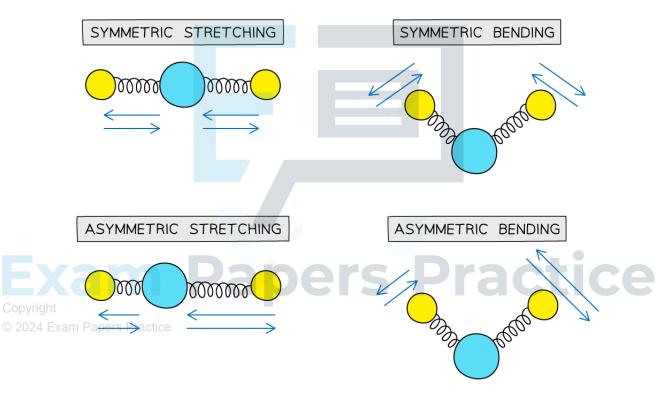


Typical proton chemical shift values are given in Section 27 of the IB Chemistry Data Booklet. The values alone do not identify specific protons as the values occur over a range that is sometimes overlapping, but they can be used in combination with other structural information to help confirm a feature

Interpreting an NMR Spectrum

- Protons in the same environment are chemically equivalent
- Each peak on a NMR spectrum relates to protons in the same environment
- Peaks on a low resolution NMR spectrum refers to environments of an organic compound
 - Eg. Ethanol has the molecular formula CH₃CH₂OH
 - This molecule as 3 separate environments: -CH₃, -CH₂, -OH
 - So 3 peaks would be seen on its spectrum at 1.2 ppm (-CH₃), 3.7 ppm (-CH₂) and 5.4 ppm (-OH)

A low resolution NMR spectrum with integration trace


- The area under each peak is determined by computer and an **integration trace** overlaid on the spectrum
- The integration trace has stepped lines whose steps are in the same proportion as the peak areas
- This makes it easier to determine the relative abundance of the different proton environments

11.1.4 Infrared Spectroscopy

How IR Spectroscopy works

- All covalent bonds act rather like springs, as opposed to rigid bars
- Like springs, the bonds can vibrate in a number of different ways
- The frequency of vibration occurs in the infra-red region of the electromagnetic spectrum
- If an organic molecule is irradiated with infra-red energy that matches the natural vibration frequency of its bonds, it absorbs some of that energy and the amplitude of vibration increases
- This is known as **resonance**

Different modes of vibration in molecules. Each mode has a characteristic frequency of vibration

Infrared (IR) spectroscopy

- Infrared (IR) spectroscopy is a technique used to identify compounds based on changes in vibrations of atoms when they absorb IR of certain frequencies
- A **spectrophotometer** irradiates the sample with IR radiation and then detects the **intensity** of **IR radiation** absorbed by the molecule
- IR energy is absorbed only if a molecule has a permanent dipole that changes as it vibrates

- Symmetrical molecules such as O₂ or H₂, are therefore **IR inactive**
- The **resonance frequency** is the specific frequency at which the bonds will vibrate
- Rather than displaying frequency, an **IR spectrum** shows a unit called **wavenumber**
 - Wavenumber is the reciprocal of the wavelength and has units of cm⁻¹
- Characteristic absorptions can be matched to specific bonds in molecules
 - This enables chemists to determine the **functional groups** present

	Bond	Functional groups containing the bond	Characteristic infrared absorption range (in wavenumbers) (cm ⁻¹)	
[C-0	Hydroxy, ester	1040-1300	
	C=C	Aromatic compound, alkene	1500–1680	
	C=0	Amide carbonyl, carboxyl ester	1640–1690 1670–1740 1710–1750	
	C≡N	Nitrile	2200-2250	
X	С-Н	Alkane	2850-2950	
yright 24 Exam F	⊃a <mark>№⊤s</mark> ₩rac	_{tice} Amine, amide	3300-3500	
	0-н	Carboxyl, hydroxyl	2500-3000 3200-3600	

Absorption Range of Bonds

 Due to some absorption bands overlapping each other, other analytical techniques such as mass spectroscopy should be used alongside IR spectroscopy to identify an unknown compound

Interpreting an IR Spectrum

• The best way to understand how to interpret an **IR spectrum** is by looking at examples and becoming familiar with the characteristic features of an **IR spectrum**