E白

EXAM PAPERS PRACTICE
10.3 Database design and normalisation Mark Scheme

Q1.
All marks AO1 (understanding)

Level	Description 4A line of reasoning has been followed to produce a coherent, relevant, substantiated and logically structured response. The response covers all three areas indicated in the guidance below and in at least two of these areas there is sufficient detail to show that the student has a good level of understanding. To reach the top of this mark range, a good level of understanding must be shown of all three areas.	$10-12$
3	A line of reasoning has been followed to produce a coherent, relevant, substantiated and logically structured response which shows a good level of understanding of at least two areas indicated in the guidance below.	$7-9$
2	A limited attempt has been made to follow a line of reasoning and the response has a mostly logical structure. At least four points have been made. Either a good level of understanding of one area from the guidance has been shown or a limited understanding of two areas.	$4-6$
1	A few relevant points have been made but there is no evidence that a line of reasoning has been followed. The points mayonly relate to one or two of the areas from the guidance or may be made in a superficial way with little substantiation.	$1-3$
A		

Guidance - Indicative Response

For each guidance point, if the student expands on the point to explain in what way the measure will improve performance then this can be considered to be a second point. For example:

- "Using a processor with more cores" is one point.
- "Using a processor with more cores which will be able to execute multiple instructions simultaneously" is two points.

Note that just "faster" is not enough to count as an expansion point without an explanation of why.

1. Server Hardware

Replace the processor with one which has more cores
Replace the processor with one which has more cache memory // increase the
amount of cache memory
Replace the processor with one which runs at a faster clock speed NE. faster processor

Use a parallel processor architecture // use more processors which can work in parallel
Use a processor with a bigger word size
Use a processor that makes (better) use of pipelining
Install more RAM // main memory // primary memory
Use RAM // main memory // primary memory with a faster access time
Replace HDDs with SSDs // Replace HDDS with HDDs that can read data at a faster rate
Defragment the HDD
Replace the motherboard with one which has buses which run at a faster clock speed
Replace the motherboard with one which has more lines in the data bus
Use the Harvard architecture
Distribute the processing across multiple servers

2. Network

Replace the network cable with cable that has a higher bandwidth // replace copper cable with fibre-optic cable A. Ethernet cable for fibre-optic NE. higher bandwidth network
Replace any wireless / WiFi connections with wired ones
Replace the network cards with ones that can transmit data at a higher bitrate
Consider the overall network design eg how the network is divided into subnets \mathbf{A}. split the network into subnets
Use a star topology (instead of a bus)
Consider using a more efficient protocol for the data across the network
Add additional wireless access points

Use a more efficient technique for controlling concurrent access to the database // replace record/table locks with serialisation/timestamp ordering/commitment ordering

Replace the database software with software that uses more efficient algorithms for tasks A. examples eg replace linear search with binary search
Use the index feature of the database to speed up searching on fields that are commonly used for this purpose
Rewrite the database software in a language that is suitable for concurrent execution // use a functional programming language for the database software
Ensure the software is compiled rather than executed by an interpreter // rewrite the software in assembly language/machine code
Review the conceptual model of the database to see if it contains any inefficiencies such as data redundancy that could be eliminated A. normalise the database design Consider if it would be appropriate to sacrifice normalisation of the conceptual model to improve performance
Use a non-relational database system A. examples eg NoSQL
Distribute the data across multiple servers

Try to reduce the amount of other (unrelated) software that might be running on the database server at the same time
Try to reduce the number of database accesses that need to be made simultaneously // run some tasks at quiet times / overnight
Purge / archive data that is no longer necessary / in use

Q2.
(a) All marks AO2 (analyse)

1 mark for any one correctly drawn relationship
OR
2 marks for three relationships drawn correctly
Max 1 if more than three relationships drawn and any are incorrect
A. a many:many relationship drawn between EventType and Fixture as this is modelled by a linking relation (EventAtFixture)

(c) All marks AO1 (understanding)
*Minimise data duplication // no unnecessary repeated data; A. reduce for minimise R. eliminate
*Eliminate data redundancy; A. reduce/minimise for eliminate
Eliminate data inconsistency // improve consistency // avoid inconsistency problems;
Eliminate update anomalies; A. example in context A. updates only need to be made in one place
Eliminate insertion anomalies; A. example in context
Eliminate deletion anomalies; A. example in context
NE. easier to update/insert/delete without concrete example or good explanation
NE. fewer errors when updating / inserting / deleting without concrete example or good explanation
NE. saving space / memory

NE. easier / faster to query

Note: Only award one of the two marks with *. ie a response cannot get two marks for discussion of only duplication and redundancy

(d) $\mathbf{3}$ marks for AO2 (analyse) and 2 marks for AO3 (programming)

Mark Scheme

AO2 (analyse) - 3 marks:
1 mark for correctly analysing the data model and identifying the tables that data needs to be extracted from (Athlete, EventEntry, Fixture) and the fields that need to be extracted (Surname, Forename, DateOfBirth), and including these and no other tables or fields in the query

1 mark for correctly identifying how the data in the required tables should be combined to produce the desired result (the linking conditions -
Athlete.AthleteID = EventEntry.AthleteID and EventEntry.FixtureID
= Fixture.FixtureID)
1 mark for identifying the correct condition to use within the model for the FixtureDate field (FixtureDate = "17/09/2018") and for using the correct logical operators between all of the conditions (if a linking condition is also used)

Note: The AO2 marks for analysing the data model should be awarded regardless of whether correct SQL syntax is used or not as they are for data modelling, not syntactically correct SQL programming

AO3 (programming) - 2 marks:
1 mark for fully correct SQL in two of the four clauses (SELECT, FROM, wHERE, ORDER BY)

2 marks for fully correct SQL in all four clauses (SELECT, FROM, WHERE, ORDER BY)

Note: For an SQL clause to be counted as "fully correct", the syntax of the clause must be correct and the relevant AO2 decisions must also have been taken for the clause. eg the SELECT clause must have the correct fields in it only

Example Solutions

Example 1

```
SELECT Surname, Forename, DateOfBirth
FROM Athlete, EventEntry, Fixture
WHERE FixtureDate = "17/09/2018"
    AND Athlete.AthleteID = EventEntry.AthleteID
    AND EventEntry.FixtureID = Fixture.FixtureID
ORDER BY Surname
```


Example 2

SELECT Surname, Forename, DateOfBirth

FROM Athlete INNER JOIN EventEntry ON Athlete.AthleteID =
EventEntry.AthleteID INNER JOIN Fixture ON
EventEntry.FixtureID = Fixture.FixtureID
WHERE FixtureDate = "17/09/2018"
ORDER BY Surname

Overall Max 4 if solution does not work fully

Additional Guidance

AO2 marks:
Mark(s) can be awarded for the correct logical conditions even if the required tables are not identified as being used by the query

Allow the inclusion of the unnecessary table EventAtFixture for AO2 and AO3 marks but only if it is linked to the other tables with a correct condition i.e. EventAtFixture.FixtureID = Fixture. FixtureID or alternatively EventAtFixture.FixtureID = EventEntry.FixtureID or both

Allow omission of delimiters around date for AO2 marks only.

AO3 marks:

A. table names before fieldnames separated by a full stop
A. use of Alias / AS command e.g. FRom Athlete AS A then use of A as the table name but note that command Alias is not required e.g. FROM Athlete A
A. INNER JoIn written as one word i.e. INNERJOIN
A. ORDER BY written as one word i.e. ORDERBY
A. ASC at end of ORDER BY clause but R. ASCENDING
A. insertion of spaces into fieldnames
A. use of " \# or 'as delimiters around date - Note: delimiters are required for

AO3 correct code but not for AO2 mark for date condition
A. date parts given in any order so long as they are separated by /
A. 18 instead of 2018 in year
I. unnecessary brackets

DPT for unnecessary punctuation - allow one semicolon at the very end of the statement, but not at the end of each clause DPT for fieldname before table name

Refer responses using nested SQL queries to team leaders.

Q3.
(a) Mark is for AO2 (analyse)

CarRegNo and JobDate;
A. Just both these attribute names written with no further explanation
R. "CarRegNo or JobDate"
(b) $\mathbf{1}$ mark for AO2 (analyse) and 1 mark for AO1 (understanding)

AO2 (analyse) - 1 mark:
A person may own more than one car // a person may bring different cars to the garage;

It might be desired to store details of an owner when the car they own is not yet known;
A. A car might be owned by more than one person (at different times)
A. Easier to transfer car from one owner to another

AO1 (understanding) - 1 mark:

Avoid storing owner details once for each car they own / multiple times;
Avoid having to input owner details once for each car they own;
To transfer car between owners would only have to change one attribute in the car relation;
Minimise data duplication // no unnecessary repeated data; A. Reduce for minimise
Eliminate data redundancy; A. Reduce/minimise for eliminate
Eliminate data inconsistency // improve consistency // avoid inconsistency problems;
Eliminate update anomalies; A. Example in context
Eliminate insertion anomalies; A. Example in context
NE. Fewer errors when updating/inserting/deleting without concrete example or good explanation
NE. Saving space/memory
NE. Easier to query
(c) All marks AO2 (analyse)

1 mark for any one correctly drawn relationship OR 2 marks for three relationships drawn correctly
MAX 1 if more than three relationships drawn and any are incorrect

(d) $\mathbf{1}$ mark for AO2 (analyse) and 2 marks for AO3 (programming)

Mark Scheme
AO2 (analyse) - 1 mark:
1 mark for correctly identifying the table in the data model that needs to be updated (Job) and the condition that should be used to identify the correct record in the table to update (JobID $=206$).

Note: The AO2 mark for analysing the data model should be awarded regardless of whether correct SQL syntax is used or not as it is for data modelling, not syntactically correct SQL programming

AO3 (programming) - $\mathbf{2}$ marks:
1 mark for correct SQL syntax in two of the three clauses (UPDATE, SET, WHERE) OR
2 marks for fully correct SQL

Example Solution

```
UPDATE Job
SET JobDuration = "01:30"
WHERE JobID = 206
```

Additional Guidance

AO3 marks:

A Any type of quotation marks or hashes for delimiters for JobDuration or no delimiters
A. The value 206 if it is delimited by any type of quotation mark
A. Any sensible format for the time data eg "01.30", "1:30", "1:30.00" etc.
A. Time given as a decimal ie 1.5
A. Table name given before fieldname
I. Quotation marks around fieldnames
I. Any attempt to also change value of InGarage
(e) All marks AO3 (programming)

Method 1:

A. List of fields in any order for method 2, but to get the VALUES mark in method 2 , order of fields list in InSERT INTO must match order of values in
A. The value(s) 206 and 12 if they are delimited by any type of quotation mark
(e) $\mathbf{3}$ marks for AO2 (analyse) and 2 marks for AO3 (programming)

Mark Scheme

AO2 (analyse) - $\mathbf{3}$ marks:
1 mark for correctly analysing the data model and identifying the tables that data needs to be extracted from (Part, PartUsedForJob) and the fields that need to be extracted (PartID, Description, Price, QuantityUsed), and including these and no other tables or fields in the query A. Including the table Job which is not needed, as long as it is correctly linked in by a condition 1 mark for correctly identifying how the data in the required tables should be combined to produce the desired result (the linking condition -
PartUsedForJob.PartID = Part.PartID)
1 mark for identifying the correct conditions to use within the model for the Jobid field (JobID = 93) and for using the correct logical operators between all of the conditions (if a linking condition is also used)

Note: The AO2 marks for analysing the data model should be awarded regardless of whether correct SQL syntax is used or not as they are for data modelling, not syntactically correct SQL programming

AO3 (programming) - $\mathbf{2}$ marks:

1 mark for correct SQL in two or three of the four clauses (SELECT, FROM, WHERE, ORDER BY) OR

2 marks for fully correct SQL

Example Solutions

Example 1

```
SELECT PartID, Description, Price, QuantityUsed
FROM Part, PartUsedForJob
WHERE JobID = 93
    AND PartUsedForJob.PartID = Part.PartID
ORDER BY PartID
```


Example 2

```
SELECT PartID, Description, Price, QuantityUsed
FROM Part INNER JOIN PartUsedForJob ON
PartUsedForJob.PartID = Part.PartID
WHERE JobID = 93
ORDER BY PartID
Overall MAX 4 if solution does not work fully
Additional Guidance
```


AO2 marks:

```
Mark(s) can be awarded for the correct logical conditions even if the required tables are not identified as being used by the query
```


MAM Maptars rractICE

AO3 marks:
Accept table names before fieldnames separated by a full stop.
Accept use of Alias/AS command eg FROM Part AS P then use of P as the table
name but note that command Alias is not required eg FROM Part P.
Accept inner join written as one word ie innerjoin or just as Join
Accept ORDER BY written as one word ie ORDERBY.
Accept ASC at end of ORDER BY clause.
Accept insertion of spaces into fieldnames.
Accept use of " or ' as delimiters around number 93.
lgnore unnecessary brackets.
DPT for unnecessary punctuation - allow one semicolon at the very end of the statement, but not at the end of each clause.
DPT for fieldname before table name.
For the DPT points, the penalisation is in terms of number of clauses of SQL code not marks ie if fieldname is before table name in two out of four clauses of SQL then this could count as three clauses of correct SQL

Refer responses using nested SQL queries to team leaders.

Refer responses using RIGHT JOIN OR LEFT JOINT to team leaders.

(f) All marks AO2 (analyse)

1 mark: Create a new relation to identify which make/model(s) of car each part can be fitted to;
A. Use of a relation name that clearly identifies the purpose eg PartToFitMakeModel instead of an explanation
A. If it is just stated that a new relation is creation if the attributes in the relation make its purpose clear
NE. A relation to link the Part and Car relations

2 marks from:

Store the attributes PartID, Make and Model in the new relation;
I. Inclusion of additional attributes

Make the PartID, Make and Model / all the attributes the entity identifier;
A. The creation of a new field as an entity identifier for this relation if it is explained that a constraint would also need to be added to ensure that it is not possible to record twice in the relation that a particular part could be fitted to a particular make and model of car
Accept answers by example, such as: PartToFitMakeModel (PartID, Make, Model)

Alternative Response

1 mark:

Create two new relations, one to associate an entity identifier with each make and model of car (eg MakeModelID) and one to link the parts to this new relation
A. If it is just stated that new relations will be created if the attributes in the relations make their purpose clear

2 marks from: Store the attributes Make and Model with a new entity identifier (eg

 MakeModelID) in one of the new relations;Store the PartID in the other new relation together with the entity identifier from the first new relation (eg MakeModelid);
Make the PartID and MakeModelid the entity identified in the second new relation;
A. The creation of a new field as an entity identifier for this relation if it is explained that a constraint would also need to be added to ensure that it is not possible to record twice in the relation that a particular part could be fitted to a particular make and model of car
Accept answers by example, such as: UniqueMakeModel (MakeModelID, Make, Model) and PartToFitMakeModel (PartID, MakeModelID)
A. Table or entity for relation.
A. Field for attribute.
A. Primary key for Entity Identifier.
(a) Only one (type of) product per order // Must make new order for each (type of) product;
as ProductNumber / product details stored in relation that has OrderNumber as primary key / product relation directly related to order relation // there is transitive/(A.non-key) dependency // as relations not (fully) normalised; Difficult to query // requires (unnecessarily) complex queries; as contains repeating groups (of attributes); A. Either way round A. Table for relation
(b)

1 mark for each correct relationship, up to MAX 3
MAX 2 if more than three relationships drawn and any of them are incorrect
(c) Sequence of instructions / program/code; NE. Programming language Note:

Do not award mark for program if candidate clearly means HTML which is executed/run/interpreted on the server (instead of the client); executed/run/interpreted when a web page is requested;
to generate a web page (and its contents) which the server returns to the client // generating of dynamic web pages;
(a) 1 mark for any one correct relationship drawn

2 marks for all three correct relationships drawn
I. Any additional writing on diagram

(b) UPDATE PriceBand

SET Price = 5.99
WHERE ServiceSpeed = "Express"
AND MinWeight $=1000$
AND MaxWeight $=4999$
1 mark for UPDATE PriceBand
1 mark for SET Price $=5.99$

1 mark* for ServiceSpeed = "Express"
1 mark* for either MinWeight $=1000$ or MaxWeight $=4999$
(or both joined by AND). A. use of $>=$ and $<=$ instead of $=$ if
conditions given for both MinWeight and MaxWeight.
To award both marks indicated by * symbol, the conditions must be joined by AnDs.
A. Double or single quotes around Express
A. Express written in any case
A. $£$ symbol before 5.99
A. Table names before fieldnames

DPT for fieldname before table name.
DPT for unnecessary punctuation e.g. quotes where they should not appear. Allow one semicolon at the very end of the statement, but not at the end of each clause.
DPT use of incorrect equality operator e.g. ==
(c) Alternative 1

SELECT DateSent, Postcode, ServiceSpeed, Price FROM Parcel, PriceBand
WHERE CustomerID = 109
AND Parcel. ServiceSpeed = PriceBand. ServiceSpeed
AND Parcel. Weight >= PriceBand.MinWeight
AND Parcel.Weight <= PriceBand.MaxWeight ORDER BY DateSent

Alternative 2

SELECT DateSent, Postcode, ServiceSpeed, Price FROM Parcel INNER JOIN PriceBand ON
Parcel.ServiceSpeed = PriceBand.ServiceSpeed
AND Parcel.Weight $>=$ PriceBand.MinWeight
AND Parcel.Weight <= PriceBand.MaxWeight
WHERE CustomerID $=109$
ORDER BY DateSent

1 mark for SELECT clause with correct four fields
1 mark for EROM clause with correct two tables
1 mark for CustomerID = 109
1 mark for
Parcel.ServiceSpeed=PriceBand.ServiceSpeed
1 mark for Parcel. Weight >= PriceBand.MinWeight AND
Parcel.Weight <= PriceBand.MaxWeight
1 mark for ORDER BY DateSent
MAX 2 of the 3 marks for conditions if not joined by ANDs
Conditions linking the two tables can be present in either the FROM or WHERE clause or a mixture of both, as long as they are syntactically and logically correct.
Marks for correct files/tables in SELECT and FROM statements should not be awarded if additional fields/tables included, except allow the inclusion of the CUSTOMER table in the FROM statement so long as it has been correctly linked to the PARCEL table.
Marks can be awarded for the conditions in the where statement even if the required tables are not present in the FROM.
A. Table names before fieldnames.
A. Use of Alias/AS command e.g. FRom Parcel AS P then use of P as table name (note some dialects of SQL do not require AS e.g. FROM Parcel P)
A. Insertion of spaces into fieldnames.
A. 109 with no delimiters or delimited using " or '.
A. Use of BETWEEN command for weight range e.g.

Parcel.Weight Between PriceBand.MinWeight And
PriceBand.MaxWeight
A. ORDER BY written as one word ORDERBY.
A. ASC at the end of ORDER BY.
I. Unnecessary brackets.

DPT for unnecessary punctuation - allow one semicolon at the very end of the statement, but not at the end of each clause.
DPT for fieldname before table name.
DPT use of incorrect equality operator e.g. ==
Refer responses using nested SQL queries to team leaders.
(d) Parcel(ParcelID, ServiceSpeed, Weight, DateSent, CustomerID, RecipientName, HouseNumber, Postcode)

PostcodeLookup(Postcode, Street, Town, County)
1 mark for identifying that a new PostcodeLookup relation is required. Purpose must be clear; it is not sufficient to just make a new relation. Purpose could be made clear by any one of: appropriate name of relation (A. Address), approximately the correct attributes (allow, for example, incorrect inclusion of house number or CustomerID) in relation or having Postcode as the primary key.
1 mark for correct attributes in PostcodeLookup relation and
identifying the Postcode as the primary key
1 mark for correct attributes left in Parcel relation and correct primary key
A. Answers given as SQL commands. As the question did not ask for this, perfect syntax is not required.
A. Alternative names for entities, so long as meaning is clear.
A. Spaces in entity and attribute names.
A. PostcodeLookup relation called Postcode even through this is the same as an attribute name.
A. Addition of unnecessary new relation for recipients which is not required for this question.
R. Do not award marks for correct attributes in a relation if additional attributes included.

Q6.
(a) Qualification(SubjectName, Level)

Module(ModuleCode, ModuleName, UMSPoints, SubjectName, Level)

Entry(CentreNumber, CandidateNumber, ModuleCode, ExamSession)

1 mark for naming all three relations correctly (Qualification, Module, Entry) if alternative names are used, the purpose of the tables must be clear to award this mark.
1 mark for one relation containing the correct attributes OR 2 marks for all three relations containing the correct attributes.
1 mark for correct primary key identified in one relation OR 2 marks for correct primary key identified in all three relations.

A Alternative names for relations and attributes, so long as meaning is clear.
A Spaces in relation and attribute names.
A Introduction of a QualificationID field into the Qualification relation with it being used as the primary key (and therefore link to the Module table as well) A Introduction of an Entry ID field into the Entry relation with it being used as the primary key.
A ExamSession attribute split into parts e.g. Season, Year or just as a Date.
A Creation of a fourth relation for sessions, containing a SessionID as the primary key and the ExamSession as the other attribute then the use of the SessionID in the Entry relation instead of ExamSession.
A Accept the addition of other attributes to relations that are not asked for, as long as they are relevant e.g. 'Extra Time' in the Entry relation or 'Entry Restrictions' to the Qualification relation but a relation should not be considered to have the correct attributes if additional attributes are added that are irrelevant or would mean that the design is not normalised.
I If any unnecessary relations are created for the first mark on relation names.
I Any representation for foreign keys
\mathbf{R} Attribute names that are the same as relation names.
(b) Composite (key);

A Compound (key)

oт.XAM PAPERS PRACTICE

(a) $\mathbf{1}$ mark for any one correct relationship drawn

2 marks for three correct relationships drawn

MAX 1 if any incorrect relationships drawn

(b) TreatmentName VARCHAR(20) PRIMARY KEY
/ /
TreatmentName VARCHAR (20)
PRIMARY KEY (TreatmentName)

1 mark for TreatmentName, with sensible data type and identified as primary key

1 mark for two other fields with sensible data types and lengths (if given) OR 2 marks for all three other fields with sensible data types and lengths

A Any sensible types. Lengths do not need to be specified.

Valid alternative SQL types are:

- Alternative types for TreatmentName : char, nchar, nvarchar, ntext, longvarchar, varchar2, nvarchar2, text, tinytext, mediumtext, longtext
- Alternative types for Price: money, float, real, decimal, double, numeric, currency
R integer only types for Price
- Alternative types for TimeTaken: tinyint, smallint, mediumint, integer, number, byte, time, date / time
- Alternative types for NeedsQualification: yes / no, bit, byte, bool, tinyint, enum("yes","no") - allow sensible alternative values in enum.

There should be a comma between the creation of each field, but ignore if these are missing, and accept a semi-colon at the end of the whole query.

Answers using a syntax that is clearly not SQL should be awarded zero marks. But:

- ignore one punctuation error e.g. unnecessary colons between fieldname and type
- answers in SQL style syntax but using non-SQL data types can be credited but MAX 1 of 2 for other fields if any non-SQL types used.
(c) Alternative 1

AND ApDate >= "01/01/2014"
AND ApDate <= "31/12/2014"
AND Customer.CustomerID = Appointment. CustomerID

1 mark for SELECT clause with correct three fields
1 mark for FROM clause with correct two tables
1 mark for TreatmentName = "Luxury Manicure"
1 mark for ApDate >= "01/01/2014"
1 mark for ApDate = "01/01/2014"
AND ApDate = "01/01/2014"
1 mark for ApDate "31/12/2013", ApDate
"01/01/2015" as alternative date criteria.
Accept dates written in any format eg "12-31-2013"
Valid delimiters for dates are ", ' or \#
Valid delimiters for strings are " or '
Valid symbols between date parts are /, - or no symbol Ignore unnecessary clause
Appointment. TreatmentName =
Treatment.TreatmentName
lgnore unnecessary brackets.
Accept the following alternative methods for specifying the year, each of which are worth $\mathbf{2}$ marks:

```
YEAR (ApDate) = 2014,
DATEPART("Yyyy",ApDate) = 2014 or no quotation marks
DATEPART ("yy",ApDate) = 2014 or no quotation marks
DATEPART("Year",ApDate) = 2014 or no quotation marks
LIKE (ApDate, "*2014*") or "*2014"
LIKE(ApDate, "%2014%") or "%2014"
LIKE "*/*/2014"
LIKE "*2014"
BETWEEN "01/01/2014" AND "31/12/2014" or allow
    "01/01/2015" as upper limit
```

DPT for unnecessary punctuation - allow one semicolon at the very end of the statement, but not at the end of each clause.
DPT missing delimiters around data values, eg no quotation marks around dates.
DPT for fieldname before table name.
Refer responses using nested SQL queries to team leaders.

Q8.
(a) Declaring PolicyNumber as primary key:

PolicyNumber INT PRIMARY KEY (NOT NULI)
/ /
PolicyNumber INT
PRIMARY KEY (PolicyNumber)

Declaring RegistrationNumber as foreign key:
RegistrationNumber CHAR(7) FOREIGN KEY REFERENCES

FOREIGN KEY (RegistrationNumber) REFERENCES
Vehicle(RegistrationNumber)
Declaring three other fields:

Datestarted DATE
PolicyType VARCHAR (13)
ExcessAmount SMALLMONEY
1 mark for PolicyNumber with sensible type and length (if required), and identified as primary key. Type can be either numeric or text.

1 mark for two other fields from RegistrationNumber, DateStarted, PolicyType, ExcessAmount with sensible data types and lengths (if required by the type) OR 2 marks for all four other fields with sensible data types and lengths (if required by the type)

- Length of RegistrationNumber, if specified, must be 7.
- Length of PolicyType, if specified, must be at least 13.

1 mark for identifying RegistrationNumber as a foreign key.

MAX 3

Valid alternative SQL types are:

- Alternative types For PolicyNumber: smallint, mediumint, integer, any text field type (see below)
- Alternative types For DateStarted: smalldatetime, datetime, datetime2, datetimeoffset
- Alternative types For PolicyType: ENUM('Comprehensive', 'Third Party') - accept any type of quotation marks around values - accept data values in any order - accept if ENUM defined as a type separately first
- Alternative types for ExcessAmount: money, currency, float, real, decimal, double, numeric, int, smallint, mediumint, integer
- Alternative types for text fields: char, varchar, nchar, nvarchar, text, ntext, longvarchar, varchar2, nvarchar2, text, tinytext, mediumtext, longtext

Sensible non-SQL data types can also be credited but MAX 2 if any non-SQL types used.

(b) UPDATE Vehicle

SET Colour = "pink"
WHERE RegistrationNumber = "DF24JUT"
1 mark per correct line
A double or single quotes around pink and DF24JUT
A table names before fieldnames
A pink written in any case
DPT no quotes

DPT for fieldname before table name
DPT for unnecessary punctuation - allow one semicolon at the very end of the statement, but not at the end of each clause
MAX 2
(c) SELECT Model, Colour, Forename, Surname

FROM Owner, Vehicle
EXAMTMPERS:PRACTICE

1 mark for correct four fields in SELECT clause
1 mark for correct two tables in FROM clause
1 mark for WHERE RegistrationNumber = "AB72XHC"
1 mark for Owner.OwnerID = Vehicle.OwnerID, joined to other condition with AND

SELECT Model, Colour, Forename, Surname
FROM Owner INNER JOIN Vehicle ON Owner.OwnerID = Vehicle.OwnerID
WHERE RegistrationNumber = "AB72XHC"
1 mark for correct four fields in SELECT clause
1 mark for correct two tables in FROM clause
1 mark for INNER JOIN using Owner.OwnerID = Vehicle.OwnerID
1 mark for WHERE RegistrationNumber = "AB72XHC"
Marks for SELECT and FROM statements should not be awarded if additional fields / tables included.
Accept table names before fieldnames.

Accept use of Alias / AS command eg FROM Vehicle AS V then use of V as table name.
Accept insertion of spaces into fieldnames
DPT for unnecessary punctuation - allow one semicolon at the very end of the statement, but not at the end of each clause.
DPT for fieldname before table name.

Refer responses using nested SQL queries to team leaders.

(d) (i) Sequence of instructions / program / code; NE programming language
Note: Do not award mark for program if candidate clearly means HTML which is executed / run / interpreted on the server (instead of the client); executed / run / interpreted when a web page is requested; to generate a web page (and its contents) / result which the server returns to
the client / / generating of dynamic web pages;
MAX 2
(ii) 1 mark for this point:

Retrieve RegistrationNumber / value input by user and store in variable; \mathbf{R} responses that suggest the command makes the user input the values at the point in time when the script is run

MAX 1 point from this list:

from the web page / web site / form/web server / browser / url / request; using POST / GET methods;
(iii) Output the forename and surname;

Back to the web server / web browser / client / terminal;
A display forename and surname on web page (or alternative) for both marks
\mathbf{R} responses that imply output is made directly to screen

(e) Create a new table / / suitable table name given eg SafetyCertificates; with CertificateNumber as the primary key ; Include these fields in new table: CertificateNumber, Datelssued, GarageName;
Add RegistrationNumber into the new table as a foreign key / / as link to
Vehicle table;
A relation for table
A different fieldnames for new fields if meaning the same
A adding the extra field ExpiryDate, but not as an alternative to Date Issued
A answers by example eg writing out the new table definition, SQL script to achieve changes
R a composite key in new table
Do not award any marks unless it is clear that a new table has been created

Q9.
(a) What means:
every attribute (in relation) is dependent on the key;
the whole key;
and nothing but the key;
R Everything
OR
(relations) contain no repeating groups (of attributes) // data is atomic;
no partial dependencies;
no non-key dependencies;
R No repeated columns / attributes / data
OR
every determinant (in the relation) is a candidate key;;
Max 2

Why important:

Eliminate update anomalies; A Example
Eliminate insertion anomalies; A Example
Eliminate deletion anomalies; A Example
Eliminate data inconsistency // improve consistency // avoid inconsistency problems;
Minimise data duplication // no unnecessaryrepeated data; A Reduce for minimise \mathbf{R} eliminate
"Eliminate data redundancy; A Reduce / minimise for eliminate
NE Easier to update / insert / delete without concrete example or good
explanation
NE Less errors whenupdating / inserting / deleting without concrete example
or good explanation
NE Saving space / memory
NE Easier to query
Award marks to points made anywhere across (a)
Can only award one of the two marks indicates by asterisks (*)
Max 2
(b) One mark per correct relationship.

Max 2 if any incorrect relationships drawn Max 3
(c) FurnitureID INT PRIMARY KEY NOT NULL
// 1 .
FurnitureID INT
PRIMARY KEY(FurnitureID)
Optional

Note that currency is not a valid SQL type
FurnitureName VARCHAR(30)
Category VARCHAR(10)

Price SMALLMONEY
SupplierName VARCHAR(20)
Allow lengths after numeric types e.g. INT(11) as these are allowed in MySQL.
1 mark for FurnitureID, with sensible data type and identified as primary key
1 mark for two other fields with sensible data types and lengths OR 2 marks for all four other fields with sensible data types and lengths

A any sensible types. Lengths do not need to be specified.

Valid alternative SQL types are:

- Alternative types For FurnitureID: smallint, mediumint, integer, any text type (see below)
- Alternative types for Price: money, float, real, decimal, double, numeric, int, smallint, mediumint, integer
- Alternative types for text fields: char, varchar, nchar, nvarchar, ntext, longvarchar, varchar2, nvarchar2, text, tinytext, mediumtext, longtext

Answers using a syntax that is clearly not SQL should be awarded zero marks. But:

- ignore punctuation errors e.g. unnecessary colons or commas.
- answers in SQL style syntax but using non-SQL data types can be credited but Max 1 of 2 for data types if any non-SQL types used.
(d) SELECT CustomerName, TelephoneNumber

FROM Customer, CustomerOrder,
CustomerOrderline
WHERE FurnitureID=10765
Customer.CustomerID= CustomerOrder.CustomerID
AND CustomerOrder.OrderID= CustomerOrderLine.OrderID
ORDER BY CustomerName (ASC)
1 mark for correct two fields in SELECT clause
1 mark for correct three tables in FROM clause
1 mark for FurnitureID = 10765
1 mark for Customer.CustomerID = CustomerOrder.CustomerID, joined to other conditions with AND
1 mark for CustomerOrder.OrderID = CustomerOrderLine.OrderID, joined to other conditions with AND
1 mark for ORDER BY CustomerName, ASC is optional

SELECT CustomerName, TelephoneNumber
FROM Customer INNER JOIN CustomerOrder
ON
Customer.CustomerID=CustomerOrder.CustomerID INNER JOIN
CustomerOrderLine ON
CustomerOrder.OrderID=CustomerOrderLine.OrderID

WHERE Furniture ID = 10765
ORDER BY CustomerName (ASC)
1 mark for correct two fields in SELECT clause
1 mark for correct three tables in FROM clause
1 mark for INNER JOIN using
Customer.CustomerID=CustomerOrder.CustomerID
1 mark for INNER JOIN using
CustomerOrder.OrderID=CustomerOrderLine.OrderID
1 mark for FurnitureID = 10765
1 mark for ORDER BY CustomerName, ASC is optional
Marks for SELECT and FROM statements should not be awarded if additional fields / tables included.
Marks can be awarded for the conditions in the WHERE statement even if the required tables are not present in the FROM.
Accept FurnitureID with no quotation marks, single quotation marks or double quotation marks.
Accept table names before fieldnames.
Accept use of Alias / AS command e.g. FROM Customer AS C then use of C as table name.
Accept insertion of spaces into fieldnames
Ignore unnecessary clause
CustomerOrderLine.FurnitureID=Furniture.FurntiureID
I unnecessary brackets
DPT for unnecessary punctuation - allow one semicolon at the very end of the statement, but not at the end of each clause.
DPT for fieldname before table name
Refer responses using nested SQL queries to team leaders
(e) One mark for tick in correct row. Do not award mark if more than one row is ticked.

Q10.
(a) Composite (key);

A Compound (key)
Note: The word key is not required
(b) Data is atomic // no repeating groups (of attributes);

R No repeated columns / attributes / data / values
No partial (key) dependencies // No (non-key) attribute depends on part of the
primary key but not the whole of it // all non-prime attributes are (functionally) dependent on the whole of every candidate key // (non-key) attributes depend on the whole key;
No non-key dependencies // No transitive dependencies // (non-key) attributes depend on nothing but the key;
Every (non-key) attribute is dependent upon the key;
Every determinant is a candidate key;
A "field" for "attribute"
A "part" for "partial"
(c)

1 mark per correct relationship (the dashed one is given)
Max 1 if more than two relationships drawn
(d) Solution 1:

SELECT EmailAddress, Forename, Surname FROM Book, Member, Loan
WHERE Author = 'Lucas Bailey' AND
Book.BookID=Loan.BookID AND
Member.MemberID=Loan.MemberID
1 mark for correct three fields in SELECT clause
1 mark for correct three tables in FROM clause
1 mark for Author = 'Lucas Bailey'.
1 mark for Book.BookID=Loan.BookID linked by AND
1 mark for Member.MemberID=Loan.MemberID linked by AND

Solution 2:

SELECT EmailAddress, Forename, Surname
FROM Book INNER JOIN Loan ON Book.BookID=Loan.BookID
INNER JOIN Member on
Member.MemberID=Loan.MemberID
WHERE Author = 'Lucas Bailey'
1 mark for correct three fields in SELECT clause
1 mark for correct three tables in FROM clause
1 mark for join from Member to Loan
1 mark for join from Loan to Book
1 mark for Author = 'Lucas Bailey'
Note: Joins do not need to be done in same order as example
Do not award mark for SELECT clause if extra attributes listed.
Do not award mark for 'Lucas Bailey' unless it is enclosed in single or double quotation marks.

A table names before fieldnames.
A use of Alias / AS command e.g. FROM Member as M then use of M as table
name.
A insertion of spaces into fieldnames
DPT for unnecessary punctuation - allow one semicolon at the very end of the statement, but not at the end of each clause. Also, allow insertion of brackets at logically allowable places in the WHERE/FROM clauses.
DPT for fieldname before table name.

Refer responses using nested SQL queries to team leaders.
(e) Alternative 1:

INSERT INTO Book
VALUES (837023, "Kenyan Safari", "Karen Matu", "African Travel Guides")

Alternative 2:

INSERT INTO Book (BookID, Title, Author, Publisher)
VALUES (837023, "Kenyan Safari", "Karen Matu", "African Travel Guides")
1 mark for INSERT INTO Book;
1 mark for correct field values. If alternative 2 is used, the order of the values and fieldnames must correspond to each other;
The values Kenyan Safari, Karen Matu and African Travel Guides must be in single or double quotation marks for the mark to be awarded.

A the value 837023 with or without quotation marks.
A Minor errors in transcribing the data from the question into the answer.
A omission of brackets
——
One mark for principle and max two marks for implementation.
Principle:
Create a new table (A link table) (BookCopy); through which Book and Loan tables will be (indirectly) linked;

Implementation details using a new primary key:
Create a new unique ID/key field (e.g. CopyID) (for each copy);
Store the BookID and the CopyID in the new table;
Replace the BookID in the Loans table with this CopyID;
Note: In this implementation, CopyID is unique, i.e. BookID 1 and 2 cannot both have CopyID 1.

Implementation details using a composite key:
Create a new field CopyID;
Composite key formed by BookID and CopyID; TO if composite key is clearly in book table or loan table
Store the BookID and the CopyID in the new table;
\mathbf{R} adding CopyID to Book table as this would created data redundancy but this does not talk out other mark scheme points
Add the CopyID field to Loans table;
R replace BookID with CopyID
Note: In this implementation, CopyID is not unique, e.g. BookID 1 and 2 can both have CopylD 1.
Marks can be awarded for principle and/or implementation details.
A Relation for Table

A Answers if candidates have rewritten new relations, awarding marks where the points above can be observed in the redrawn relations;
A alternative name for CopyID
(g) (i) So that searching, adding and deleting can be done efficiently // To speed up searching, adding and deleting;
A just one of searching, adding, deleting
NE organise efficiently
NE easily for efficiently
(ii) Alternative 1 (context-specific):

A function/calculation that computes a record position/address; within a specified range; from a key field value;
A an example of a hashing function e.g. calculate an integer from certain letters in a field for one mark

Alternative 2 (generic):

A function (\mathbf{A} algorithm) H , applied to a key k ; which generates a hash value $(H(k))$ (of range smaller than the domain of values of k);
(iii) What is (1 mark):

When more than one key value maps to the same record position/address // when two keys compute the same hash value;
A "two records", "two items" or "two pieces of data" for "two keys" but \mathbf{R} "two files" - both in this question part only

How dealt with (1 mark):
Store the record in the next available location in the file // store a pointer (in each file location) that points to a list of records that have all collided at the file location;
A idea that each storage location could store more than one record e.g. five records per location, if explained.
A example of what "next available" might be
ENA $\begin{aligned} & \text { A example of what "next available" might be } \\ & \text { A key is rehashed } \\ & \text { A table for file }\end{aligned}$

Q11.
(a) Only one (type of) product per order // Must make new order for each (type of) product; as ProductNumber / product details stored in relation that has OrderNumber as primary key / product relation directly related to order relation // as relations not (fully) normalised;
Difficult to query // requires (unnecessarily) complex queries; as contains repeating groups (of attributes);
A either way round
A table for relation
(b)

1 mark for each correct relationship, up to Max 3
Max 2 if more than three relationships drawn.
(c) ProductNumber INTEGER PRIMARY KEY//
$\left.\begin{array}{l}\text { ProductNumber INTEGER } \\ \text { PRIMARY KEY(ProductNumber) }\end{array}\right\}$

ProductPrice SMALLMONEY
ProductDescription VARCHAR(50)
QuantityInStock INTEGER
1 mark for ProductNumber correct with appropriate type and identified as primary key
1 mark for two other fields correct with appropriate types OR 2 marks for all three other fields correct with appropriate types

A any sensible types / field lengths. eg:
For ProductNumber: integer, numeric, char, varchar, text, nchar, nvarchar, ntext, longvarchar, varchar2, nvarchar2

$=-1$

 For ProductPrice: smallmoney, money, currency, float, real, decimal, dec,double, double precision, numeric For ProductDescription: varchar, char, varchar, text, nchar, nvarchar, ntext, longvarchar, varchar2, nvarchar2
For Quantity InStock: integer, numeric, float, real, decimal, dec, double, double precision, numeric

A insertion of other unnecessary but valid SQL commands e.g. AUTO INCREMENT, NOT NULL
I Spaces inserted into fieldnames e.g. Product Number
Max 2 if additional fields added
(d) Sequence of instructions / program / code;

NE programming language
Note: Do not award mark for program if candidate clearly means HTML
which is executed/run/interpreted on the server (instead of the client); executed/run/interpreted when a web page is requested; [to generate a web page (and its contents) which the server returns to the client // generating of
dynamic web pages;
(e) (i) Max 1 point from this list:

Retrieve ProductNumber and Quantity // retrieve values input by user; stores values in variables;
\mathbf{R} responses that suggest these two commands are making the user input the values

Max 1 point from this list:
from the web page/web site/form/web serve/browser; using POST/GET methods;
(ii) Query/retrieve data from the products table; to retrieve the price of product being ordered/selected on form/product that has correct product number/product number in ProdNum; Store the set of records/data/price returned in ProdDetails;
(iii) To send/output the Total Price back to the web server / web browser / client;
A display price on web page
R sent to user / customer
(f) Either

SELECT ProductNumber, ProductDescription, ProductPrice, Quantity FROM Product, OrderLine
WHERE OrderNumber = 4013
AND Product. ProductNumber $=$ OrderLine. ProductNumber
ORDER BY ProductNumber ASC
1 mark for SELECT clause with correct four fields
1 mark for FROM clause with correct two tables
=2. 1 märk for OrderNumber $=4013$. 1 mark for clause linking tables on the common field with no additional E unnecessary clauses added
1 mark for ORDER BY ProductNumber, ASC is optional

Or

SELECT ProductNumber, ProductDescription, ProductPrice, Quantity FROM Product INNERJOIN OrderLine ON

Product. ProductNumber = OrderLine. ProductNumber
WHERE OrderNumber $=4013$
ORDER BY ProductNumber ASC
1 mark for SELECT clause with correct four fields
1 mark for correct two tables in FROM clause
1 mark for INNERJOIN together with ON
Product.ProductNumber = OrderLine.ProductNumber and no other joins
1 mark for OrderNumber $=4013$
1 mark for ORDER BY ProductNumber, ASC is optional
In both solutions:

Do not award mark for SELECT clause if extra attributes listed. Do not award mark for FROM clause if extra tables listed.
Do not award mark for ORDER BY clause if order descending.
Only award two marks for conditions if they are connected by AND.
Otherwise just award one of the marks.
If candidate appears to have written two queries e.g. there are two SELECT commands then mark the first query.

A table names before fieldnames. i.e. TableName.FieldName
A " or ' as delimiters for 4013
A ascending, (ASC) for ASC
R if ASC written before ProductNumber in ORDER BY
I Spaces inserted into fieldnames e.g. Product Number
A answers that candidates have surrounded by "ExecuteSQL()".
If any of the errors listed below are made, they should result in at most one mark being lost. If the mistake is made more than once then on subsequent occasions, providing that the meaning is clear, the mistake should be ignored:

- the addition of unnecessary punctuation such as semicolons
- the fieldname being written before the tablename

Q12.
(a) (i) member ID / user name; password/PIN; A account name instead of memberID; A answers to security questions;
(ii) Member (MemberID, CreditCardNo, Member(Full)Name, Address, DrivingLicenceNo, EmailAddress, Mobile(Tel)No/TelNo); + attributes from $b(i)$

I bars over attributes

 (iii) ParkingArea (LocationCode, ParkingAreaName, PostCode);
 A ParkingAreaID instead of LocationCode
 R ParkingArea
 R Name as attributes

(iv) Car (CarRegNo, LocationCode);

A RegNo/CarReg instead of CarRegNo
Allow follow through on foreign key from (iii)
(v) Booking (BookingRefCode, CarRegNo, MemberID, StartDateTime, EndDateTime, LocationCode);;;
1 mark for CarRegNo and MemberID;
1 mark for StartDateTime and EndDateTime;
1 mark for LocationCode;
1 mark for BookingRefCode as primary key;
A 2 separate attributes for DateTime
A BookingRef/BookingID instead of BookingRefCode Follow through on attribute names
(b)

1 mark for each correct relationship,
If 4 or 5 relationships given, mark as follows:
All 4/4 or 5/5 correct: 3 marks
3/4 or /54 correct: 2 marks
2/4 or3/5 correct: 1 mark
All other cases: 0 marks
I relationship between Member and Parking Area
(c) SELECT MemberID, (MemberFulliName,) CarRegNo, StartDateTime, (EndDateTime) FROM (Member,) Booking

Alternative Answer:

SELECT *; FROM Booking;

> A StartDateTime instead of EndDateTime
> P1 if attribute.table notaion used
> P1 for extra punctuation or tbl in front of table name
> I punctuation around dates/times
> I case of keywords etc
> A other wildcard characters

Alternative Answer:

SELECT MemberID, MemberFulliname, CarRegNo, StartDateTime, EndDateTime FROM Member INNER JOIN Booking ON Member.MemberID = Booking.MemberID
WHERE EndDateTime >= 1/12/07 AND
EndDateTime $<=31 / 12 / 07$
ORDER BY MemberID

Q13.
(a) a collection of tables /more than one table;
//two or more linked tables / referencing other tables;
(b) (i) two (or more) attributes \mathbf{R} keys which are jointly used to uniquely identify a record / tuple / row;
(ii) because no one attribute can uniquely identify a record in this relation; A field
// answer in context of Booking table
(c) (i) an attribute in one relation/table which (links to)/is a primary key attribute in another relation / table; A field
(ii) CatOwnerID;
(d)

Field	CageNumber	CatName	Surname	ContactNumber
Table	Booking	Cat	CatOwner	CatOwner
Criteria	9			
	$;$	$;$	$;$	$;$

A [enter cage number] or similar
Order unimportant; I other fields if they don't inhibit the QBE;
A If Ginger entered for criterion for Cat
Table e.g. Cat Table, Penalise once

Q14.
(a) (i) Recipe table;

A Figure 2;
(ii) Why: contains multiple values in Ingredients field/attribute/column // data in Ingredients column not atomic // repeating groups;
(b) (i) Fully normalised:

Every attribute is dependent on the key, the whole key and nothing but the key;;
OR (tables contain no repeating groups of attributes,) no partial
dependencies;
No non-key dependencies;
A rely on instead of depend on
OR if (and only if) every determinant in the relation is a candidate key;
(ii) Why: to aid consistency of data // to avoid potential data inconsistency problems
// to eliminate data inconsistency // to minimise data duplication // to eliminate data redundancy; A reduce instead of eliminate \mathbf{R} saving space
(c) (i) Recipe (RecipeID, Dish, PrepTime, CookTime, NoOfServings, CookInstructions);
(ii) Foodltem (FoodltemID, FoodltemName, PackSize, Price);
(iii) RecipeIngredient(FoodItemID, RecipeID, Quantity)

1 mark for each correct field, 1 mark for correct primary key (take off 1 mark for every extra field included)
(d) SELECT FoodltemName, Quantity, PackSize, Price (1)

FROM Foodltem, RecipeIngredient, Recipe (1)
WHERE (Recipe.Recipeld = RecipeIngredient. Recipeld) (1)
AND (RecipeIngredient.Foodltemld = FoodItem.Foodltemld) (1)
AND (Recipe.Dish = "Feta Salad") (1)
ORDER BY FoodltemName ASC (1)
Field names F/T
P1 for fieldname.tablename
P1 tbl prefix
A ORDER BY FoodItemName
A Dish instead of Recipe.Dish
A 'feta salad' instead of 'Feta Salad' A \#feta salad\# instead of 'Feta Salad'

A actual example(s) from the tables
A fields instead of attributes
(b) BookID, DateOut;;

I MemberID
Other fields, penalise
(c) To speed up searching;
(d) Check digit;

Q16.
(a) Copyright, Designs and Patents Act (1998); if other laws included T.O.
(b) Boxes for correct entities: SoftwareLicence SoftwareInstallation one mark Correct degree of relationship: 1 to many one mark Suitable name for relationship: one mark

3
(c) Any sensible field length accepted except for SoftwareID, ComputerID, StaffID
(i) SoftwareID VARCHAR(트) PRIMARY KEY (NOT NULL)
// SoftwareID VARCHAR(10)
PRIMARY KEY(SoftwareID);
Could appear at end of list. It doesn.t have to be with softwareID $\operatorname{VARCHAR(10)}$ In fact, this would provide a syntax error

SoftwareName VARCHAR(30)
Supplier VARCHAR(20)
DatePurchased DATE
Version VARCHAR(10)
ExpiryDate/DateValidTo DATE
NoOfLicences INT
1 mark for any 3 attributes correct
P1 if extra symbols used
Ignore spaces and case in attribute

A Date/Time instead of Date
A Integer instead of INT
$B O D$ any attributes which are clearly more than 1 word
ComputerID VARCHAR(6)
Date Installed DATE
StaffID VARCHAR(3)
PRIMARY KEY (SoftwareID, ComputerID);
FOREIGN KEY (SoftwareID)

REFERENCES Software Licence(SoftwareID);
1 mark for any 2 attributes correct
If not DDL give 1 mark If composite key identified I NOT NULL
(d) SELECT ComputerID, SoftwareName, Version;

Extra attributes: T.O.
FROM SoftwareLicence, SoftwareInstallation ;
WHERE SoftwareLicence.SoftwareID=SoftwareInstallation.SoftwareID ;
ORDER BY ComputerID;

A ASC or DESC

Accept (instead of FROM WHERE): FROM SoftwareLicence INNER JOIN SoftwareInstallation ON SoftwareLicence.SoftwareID = SoftwareInstallation.SoftwareID
P1 for other spurious punctuation inc semicolons
A LEFT JOIN
Table names prefixed with tbl, P1
If table name and attribute transposed, P1

Q17.
(a) Disadvantages of system

Causes

Repetitive data entry;
Data items stored on more than one file / duplicated;
Files cannot be shared;
No centralised, authoritative store of data;

Effects:

Wastes time;
Increases risk of errors;
Wastes storage space;
Can cause data inconsistency;
[2. Won't know which data is correct if two different versions;
1 mark per cause and 1 per resultant effect to max
Can give more than 1 effect per cause
(b) Sharing files

Data files are structured differently / have different fields;
For different applications;
So may not be compatible;
//Different files may have e.g. names and addresses;
In different formats / field lengths;
(c) Definitions
(i) Attribute - a property or characteristic of an entity;
(ii) Primary key - an attribute that will identify a particular instance of an entity
A a field which identifies a record
(iii) Foreign key - an attribute in one table that is (linked) to a primary key attribute in anther table;
A a field in one table which is a primary key field in a (linked) table
(d) (i) CustomerID;

1
(ii) OrderNumber \& OrderLineNumber

A OrderNumber \& PartNumber
(iii) PartNumber, OrderNumber
(iv)

Field	Surname	FirstName	DateOfOrder	Description	Quantity
Table	Customer	Customer	Order	Stock	OrderLine
Show				$\boxed{\square}$	$\boxed{\checkmark}$
Criteria	[(Enter) Surname]	[(Enter) First Name]	[(Enter) Date of Order]		
$/ /$ Criteria	Smith	Jeremiah	$=23 / 04 / 06$		

Mark as follows: nb Either Enter or []
$2^{\text {nd }}$ column
Customer + [Enter Surname $/$ Smith
1 mark

$3^{\text {rd }}$ Column

$4^{\text {th }}$ Column
Order + [Enter Date of Order] or $=23 / 04 / 06$
//Order + = \#23/04/06\#
A date in other similar formats, Order $+23 / 04 / 06$
1 mark
$5^{\text {th }}$ Column
Description + Stock
// PartNumber + OrderLine
1 mark

$6^{\text {th }}$ Column

Quantity + OrderLine
1 mark
'Show' (tick, 'Yes', 'true') for Description (PartNumber) + Quantity 1 mark

A Show in all columns

I anything else in 'show' cells
($5^{\text {th }} \& 6^{\text {th }}$ columns can be interchanged)

Q18.
(a) (i) A Hardwareltem

B EquipmentLoan
C 'is out on';
A any wording with similar meaning
\mathbf{R} one to many relationship
1 mark for A and B, 2 marks for C
(ii) Entity-Relationship Diagram;

A E-R diagram
A E-R D
R E-A-R diagram
(b) CREATE TABLE Hardware Item
(Description VARCHAR (30)
Make VARCHAR(15)
Model VARCHAR(15)
A text/string instead of char/varchar 1 mark
(Inventory)RefNo CHAR(20) PRIMARY KEY,
A string/text/character/VARCHAR (20) instead of CHAR(20)
1 mark
PurchaseDate DATE,
Anem mand PurchasePrice CURRENCY,
Location VARCHAR(4))
A DECIMAL/MONEY/Number/Real/Float/Single instead of CURRENCY
A Room VARCHAR(4)
A INT/number instead of VARCHAR
1 mark

Alternative for Inventory RefNo:

(Inventory)RefNo CHAR(20), PRIMARY KEY(InventoryRefNo), (Inventory)RefNo CHAR(20), NOT NULL,, PRIMARY KEY(InventoryRefNo), A VARCHAR(20) instead of CHAR(20)
Note: string lengths do not have to be exact/present except for InventoryRefNo

CREATE TABLE EquipmentLoan
(Inventory)RefNo VARCHAR(20),
A NOT NULL
If not DDL but composite key identified, give 1 mark
Location VARCHAR(4),
(Staff) Initials VARCHAR(3),

```
DateRemoved DATE,
DateReturned DATE,
A NOT NULL
1 mark
PRIMARY KEY (InventoryRefNo, DateRemoved)
1 mark
FOREIGN KEY (InventoryRefNo) REFERENCES Hardwareltem
(InventoryRefNo))
1 mark
P1 for extra attributes
```

(c) SELECT (Hardwareltem.)Description, (EquipmentLoan.)DateRemoved, 1 mark

EquipmentLoan. (Inventory)RefNo,
A Hardwareltem. InventroryRefNo
1 mark
FROM Hardware Item, EquipmentLoan
1 mark
WHERE Hardwareltem. (Inventory)RefNo = EquipmentLoan.(Inventory)RefNo 1 mark

AND (EquipmentLoan.) DateRemoved $>$ givenDate
A > =
A = >
1 mark
ORDER BY (EquipmentLoan.) (Inventory)RefNo;
1 mark
or
SELECT (Hardwareltem.)Description, (EquipmentLoan.)DateRemoved, 1 mark

EquipmentLoan. (Inventory)RefNo
A Hardwareltem. InventroryRefNo 1 mark

FROM Hardware Item
INNER JOIN EquipmentLoan
Note: can swap tables
1 mark
ON Hardwareltem. (Inventory)RefNo = EquipmentLoan. (Inventory)RefNo 1 mark

WHERE (EquipmentLoan.)DateRemoved > givenDate
A > =
$A=>$
1 mark
ORDER BY (EquipmentLoan.)(Inventory)RefNo;
A Hardwareltem. InventroryRefNo
1 mark

F/T with attribute names
P1 for tbl prefix
P1 if table name after attribute name
I extra punctuation

Q19.

(a) CandidateNumber;
(b) Table contains repeating groups;
\mathbf{R} repeated data/fields/attributes
ModuleCode, ExamSession, ModuleMark, Level, TotalMark, Grade contain multiple values; mention at least one attribute by name (forename/ surname T.O.)

There is redundant data T.O.
(c) 1 mark for correct primary key, 1 mark for correct other attributes, I spaces/underscores in attribute names

Extra attributes $=\boldsymbol{T} . \mathbf{O}$.
(i) Pupil (PupilForenames, Pupil Surname, CandidateNumber); A (Forename,Surname,CandidateNo)
(iii) PupilGrade (CandidateNumber, Level, TotalMark, Grade)

(e) Must use same attributes as in (c) above (mark as F. T.) I case

SELECT PupilForenames,Pupil Surname, Grade I pupil. / pupilgrade.(1)
FROM Pupil, PupilGrade(1)
WHERE Pupil.CandidateNumber $=$ PupilGrade.CandidateNumber
AND Level=" A"
accept Level='A' or Level=A(1)
ORDER BY TotalMark DESC; A Descending (1)
OR
SELECT PupilForenames,PupilSurname, Grade(1)

FROM Pupil INNER JOIN PupilGrade ON Pupil.CandidateNumber =
PupilGrade. CandidateNumber(2)
WHERE Level = "A"
accept Level = 'A' or Level=A(1)
ORDER BY TotalMark DESC; $\quad \mathbf{R}=\operatorname{Desc}(1)$
If pupilForename.pupil penalise once

Q20.
(a) Contains a repeating group;

OR
Cells for one or more of SubjectID, SubjectName, ExamBoardSubjectOfficerName,
NumberOfCandidatesEntered contain multiple values;
R Repeating attributes, etc
(b) Attribute names must not be redefined (exception: allow Center).

1 mark for attributes(lose this mark if extra attributes), one mark for correct primary key

CentreEntryNumber(CentreNo. SubjectID, NumberOfCandidatesEntered)
(ii)

1

1
E $\boldsymbol{M A}_{\text {(iii) }} \|^{\mathrm{S}}$
Subject(SubjectID, SubjectName, ExamBoardSubjeftOfficerName)
1
2
Penalise misspelling once
I spaces in attribute names
I capitalisation
(c) (i)

(ii)

(d) I. Inner join, Join

A Without commas
R Brackets in Select and anywhere else except:
A Brackets around (DateReported < 1/3/2005) and
(ExaminationOfficer.CentreNo=Problem. CentreNo) as shown
Asc is optional but if present it must be at end of Order By line (A Ascending)

Penalise brackets once

Max 5

(e) \mathbf{R} Brand names word processor//word processor with e-mail support;

Q21.
(a) (i) A common attribute(field); links two /related tables; // primary and foreign keys; Create a link;

1 mark per point to max
(ii) Property / characteristic of an entity;

One piece of information about an entity / item;
(b) (i) To check that data is reasonable/ appropriate;

To check that the data entered meets requirements;
To reduce the chance of incorrect data being entered;
(ii) Presence check / required field check;

Uniqueness check;
List membership / lookup list;
Range check;
Format check / picture check;
(data)Type check;
Existence (of data item or record) check;
Field length check / length check;
No of fields check;
R Check digit, Verification;
Also accept a reasonable example;
Any one of the above

Q22.
ISBN;(1)
unique identifier;(1)
R unique to books

Q23.
(a) (i) An attribute/field which uniquely identifies a record;
(b) (i) A attribute/field in one table which is the primary key in another table;
(ii) LecturerID;

Q24.
(a) Contains a repeating group;

OR
One or more of Routeld, RouteName, RouteArea, RouteDescription contain multiple values;
(b) Attribute names must not be redefined
(i) Leaflet
(ii) Route
(c)

A.

(d) I. Inner join, Join Asc is optional but if present it must be at end of Order By line (A. Ascending)
Penalise And once in this line
R. If And used
I. Quotes/hashes/Absence of separators

OR
Candidate may use relation name in front of attributes, eg. Select Person.Surname
Asc is optional
to \max

(i) Word processor//word processor with e-mail support;
(ii) Desktop publishing; A. publishing package or anything with publishing
(iii) Spreadsheet;
R. Database \& spreadsheet
R. Finance package.
R. Accounting package

Q25.
(a)

(NB don't allow relationship between Ward and PatientMedical Condition)

[^0](b) For each extra attribute lose one mark
(i) Ward(WardName, NurseInCharge, NoOfBeds) ;

A NumberOfBeds, NameOfNurseInCharge, NurseInChargeName R Wardld, Name, NurseName. NameOfNurse, BedNo, BedNumber,
(ii)

Patient(PatientNo, Surname, Forename, Address, DOB, Gender, WardName)
A Patientld, PatientNumber, PatientSurname, PatientForename, PatientAddress, DateOfBirth, PatientDateOfBirth, PatientGender, Sex,
(iii) MedicalCondition(MedicalConditionNo, Name,RecommendedStandardTreatment)
A MedicalConditionId, MedicalConditionNumber, MedicalConditionName, ConditionName, StandardTreatment, Treatment, RecommendedTreatment
R ConditionNumber, ConditionID
(iv)

PatientMedicalCondition(PatientNo. MedicalConditionNo)
A Atributes rejected in (ii) and (iii) for PatientNo and MedicalCondition No R If attributes used are not consistent with (ii) and (iii)
(c) Accept tbl in front of table name;

Select Patient.Forename, Patient.Surname,
PatientMedicalCondition.MedicalConditionNo
From Patient, PatientMedicalCondition
Where Patient. WardName ='Victoria' ;

And Patient.PatientNo = PatientMedicalCondition.PatientNo

A Forename, Surname, MedicalConditionNo, WardName

Q26.
Primary key = Productld;
Justification: Other fields would not be unique/ Productld is likely to be unique;

Q27.

(a)

If candidates gives more than required mark all to a max of three
(b) NB Order of attributes is immaterial
(i) 1 mark for primary key 1 mark for other attributes unless additional attributes
A Quantity, StockLevel, Stock, AmountInStock, Amount, NumberInStock, Qty_Stock, Qty
A Description
Product (Productld, ProductDescription, Quantity InStock)
(ii) 1 mark for primary key 1 mark for other attributes
(unless extra other attributes)
A Name, Address, (Customer)TelephoneNo, (Customer)
TelephoneNumber, TelNo, (Customer)TelNumber,
R Phone, Telephone, A Multiple lines for address including postcode, etc,
A Breakdown of name into forename, surname. Customer (Customerld, CustomerName, CustomerAddress, CustomerTelNo);
(iii) 1 mark for primary key 1 mark for foreign key Customerld 1 mark for other attributes unless extra other attributes

Order (ABCOrderNo, Customerld, CustomerOrderNo, OrderHasBeenDespatched)
A Despatched, OrderDespatched, OrderStatus
(c) Attributes must correspond with table attributes given in part (b)

A Yes, 'Yes', "Yes", Y, ' Y ', " Y ",
A Despatched, 'Despatched', "Despatched" in place of True.(1)
Select CustomerName
(Score zero for extra attributes)
1 mark
From Order, Customer

Where Customer.Customerld = Order.Customerld 1
And Order.OrderHasBeenDespatched = True
1 mark
Order By ABCOrderNo
1 mark
Mark first Select statement, but give credit for Order By ABCOrderNo.
Associate And with one of the conditions.
OK for parts of statement to be on same line, e.g. Select CustomerName
From Order, Customer
A Customer.CustomerName
A Order By ABCOrderNo ASC
A Order By Order.ABCOrderNo
A OrderBy for Order By
A the use of aliases, e.g. Select D1.CustomerName
From Customer D1, Order D2
Etc.
A "Customer.Db" Or Customer.Db , "Order.Db" Or Order.Db

A OrderHasBeenDespatched = True
A Order By ABCOrderNo Ascending
A From tbl Customer, tbl Order

Q28.
(a) (i) Bits are sent one after another / bits are sent one at a time/ bit by bit / bits sent singly / bits along a single wire / line; R data
(ii) Bits transferred simultaneously / concurrently / bits sent down many wires at the same time; data is sent one word/byte at a time;
\mathbf{R} sending blocks of data
R down 2 wires
(b) Speed of (serial) transmission/rate at which data is sent; the number of signal/voltage changes per second; A units of time one baud is (approx) one bits per second;
\mathbf{R} rate of data transmission

Q29.
(a) Optical Mark Recognition/Reading. (Not Optical mark reader)
(b) Extra digit added to the transaction code (1)

To detect if data has been corrupted (1)
(c) (i) Unique field of a record/filed used to identify record
(ii) Transaction code
(iii) Not indexed sequential / Serial or Sequential (1)
Because all the records have to be examined (1)
Or
Direct access based on a hash code of the chosen numbers(1) Only a few records will need to be checked (when collisions occurred)(1)
Max 2
(iv) Random or direct access(1)
Record can be located by simple transformation of transaction code /hashing technique used/algorithm used to store and retrieve records(1) Indexed sequential with transaction code as key field(1) Rapid access via the index is possible to find the necessary record(1)
(d) Any 4 points $\times 1$ each
Ticket scanned/ Read ticket
Check digit used to check accuracy of scanning Ticket validated,
(e.g. not out-of-date, draw not yet made)
Operator informed if ticket does not scan/is invalid
Transaction code sent to central computer
Correct file selected
Ticket's record found/Look up ticket's record/Look up record with given
transaction code
Get draw date from transaction record
Get numbers from system (for the correct draw date)
Ticket numbers checked against draw
If a winning ticket prize money determined
Result sent to point of sale machine
Result displayed at point of sale machine
(ii) VIN or Registration Number
(b) Name
Address/Post Code
Telephone Number
Customer Number if not key field in (a)
Buyer/Seller
Car Identifier (Registration No or VIN)
Payment details
E-Mail address
Date of birth
Gender
New/existing customer
or any appropriate

Any 6
(c) VIN If not key field in (a)

Registration No If not key field in (a)
Make
Model
Colour
Year
Buying Price
Selling Price
Buyers Customer Number
Sellers Customer Number or any appropriate

Any 6
(d) Customer file has record key of car file

Car file has record of customer file or separate sales file with both keys

Q31.

(a)

GIVEN

No marks for ld on its own.
No marks for Name, Address on their own. But abbreviations for Producer, etc which are clear are allowed
(b) (i) Producer (ProducerID, ProducerName)

No extra attributes
(ii) Venue (Venueld, VenueName, VenueAddress/Address)

No extra attributes
(iii) Client $\frac{1}{(\text { Clientld, ClientName, Agentld) }}$

Max 1 if extra attributes
(iv) VenueHired(Producerld, ApptDate, Venueld)

1 for correct primary key

Or
1
VenueHired(Venueld,ApptDate, Producerld)
1 for correct primary key
For each extra attribute lose mark from allocation except primary key mark
Accept Date and Time

From Client, Agent
Where Client.Agentld = Agent.Agentld
$1 \quad 1$
Mark only first Select... if more than one
1 for 4 correct attributes
1 for correct table name in front of Agentld

Q32.
(a) A database where the data is structured as a series of tables/entities and the (1) DBMS provides tools for joining tables together and selecting items from within tables (1)
(b) Bar code, location, edition, size, weight, editors, pages, publisher, author, number of copies, category, buying price, selling price, hard or paperback, year of publication

Do NOT allow ISBN or TITLE
Any 4×1
(c) Book many to one publisher

1 mark for diagram 1 mark for relationship
(d) Order - book identifier, order no

Customer - order identifier, name + address or customer id
Sales person - sale identifier, staff no
Sale - order identifier, sale no
Any other sensible entity for a bookshop
Entity 1 mark, Relationship 1 mark, Key field 1 mark

Q33.
(a)

(b) (i)
(1) \qquad (1)

Player(PlayerIDNo, PlayerSurname, PlayerForeNames, DOB, ContactTelNo)

Player ID/PlayerN
/Surname, ForeNames
/TelNo
Not IDNo instead of PlayerIDNo
(ii)
(1)
(1)

Match(MatchDate, StartTime, OppositionTeam Name, HomeAway, GoalsFor, GoalsAgainst
Date

Or

Match(OppositionTeamName, HomeAway, MatchDate, StartTime, GoalsFor, GoalsAgainst)
(iii)

(iv)

MatchPlayer(MatchDate, PlayerIdNo, ShirtldNo)
(1)

(v)
/OnShirtldNo/OnShirtNo/OnShirtld /SubstitutedPlayerIdNo. SubstitutePlayerIdNo

OffShirtIDNo/OffShirtNo/OffShirtld

Or

> (1) (1)

Substitution(MatchDate, OnPlayerldNo, OffPlayerldNo)
(1)

OnPlayerldNo and OffPlayerIDNo attributes above must be distinct Allow StartTime undelined and Time (SubstitutionTime) underlined

Examiner reports

Q1.
A very good range of responses was received to this question, with approximately half of students achieving five or more marks. Most students addressed all three aspects of the question (hardware, network, database and software). Students tended to make more points about how the hardware could be improved than about the other two areas. This was acceptable but students needed to have covered all three areas to achieve a mark of ten or above.

Some students wrote too vaguely to achieve marks, for example by writing that a "faster processor" would improve performance, without referencing a factor such as the clock speed that would make the processor faster. Other mistakes included believing that the question required students to contrast thin-client and thick-client and that the system was web based.

A small number of students wrote about issues which might be causing the system to perform poorly instead of explaining how the performance of the system could be improved. Such responses were not worthy of a mark.

Q2.

(a) Over three quarters of students achieved some marks for completing the E-R diagram, with approximately a third achieving some marks. A straightforward way to determine the nature of the relationships is to identify which attributes are used to link the relations and in which relation such an attribute is the entity identifier/primary key and in which it is a foreign key.
(b) Good responses to this question part recognised that the data types and fieldnames were in the wrong order and that the primary key had no data type. Two thirds of students identified at least one error and just over a quarter identified two.
(c) Over half of students achieved some marks for this question. The most common valid responses referred to the elimination of data redundancy and data inconsistency.
(d) This question received a wide range of responses, with four fifths of students achieving some marks but only slightly over 10% achieving full marks. The most commonly achieved mark was for including the condition that identified records for the correct date. It was pleasing to see how many students were also able to identify the conditions required to join the tables. Common errors were failing to include all of the required tables in the FROM clause and missing out delimiters around the date.

Q3.
(a) Approximately a third of students correctly identified that a composite key made up of CarRegNo and JobDate could have been used. The most common incorrect response was CarRegNo on its own. This could not have been used as it would not have allowed a car to be booked into the garage for more than one job.
(b) Good responses recognised that a customer might own more than one car so by separating the owners into a new table data redundancy and the possibility of data inconsistency would be reduced. Where students have been given a scenario in the question it is important that they make reference to this when responding.

Responses such as "it would make the database more normalised" were not considered to be enough to be mark worthy as the student had not shown that they understood why the original design was not normalised nor that they appreciated the benefits of making it normalised.
(c) Three quarters of students gained some marks for completing the entity-relationship diagram. Some students used non-standard notations which were not considered creditworthy or drew more than three relationships on to the diagram. Students who draw more relationships than are asked for in this type of question face having their maximum mark limited.
(d) Whilst three quarters of students achieved a mark in this question part for correctly identifying the data that would be required to perform this update, only a third achieved marks for producing syntactically correct SQL. Common errors were to use INSERT INTO or SELECT instead of UPDATE, to specify the fieldname in the UPDATE clause instead of the table name and to miss out the condition necessary to identify which record to update.
(e) This was the least well-answered of the question parts that required students to write SQL code. More students believed that they should have used an UPDATE query than realised that they needed to use InSert. Of those who did use INSERT, the most common errors were to miss out the keyword Into, to miss out brackets where they were required or to put the numeric quantity value into quotation marks.
(f) This was the best-answered of the SQL question parts. The majority of students knew the correct structure of query to search for data although there was considerable variability in the accuracy of their solutions and just under a fifth of students gained full marks. Common syntactical errors were to add in brackets where they were not required, eg into the list of fieldnames or around ASC, to put commas or semi-colons between each clause or to use the keyword AND in the SELECT and FROM clauses in place of a comma. When a query requires that data from more than one table is used, students need to remember to include an appropriate condition to join the data from the two tables (either using an on clause or additional wHERE conditions). A small minority of students attempted to write two distinct queries to retrieve the required data separately from each table. Just under half of students achieved some marks for this question. A common= incorrect response was to add the Make and Model attributes to the Part relation. This was not an appropriate solution as it would have only allowed each part to be fitted to a single make/model of car, without introducing data duplication in the parts table. Students who identified the appropriate solution of creating a new relation containing the attributes PartID, Make and Model often achieved two marks rather than three as they did not identify the appropriate primary key for the table.

Q5.

This question was about relational databases. For part (a) candidates had to draw relationships onto an Entity-Relationship diagram. Most candidates achieved at least one mark, but only about a third achieved both. A surprising number drew only two relationships when the question had stated that three were required.

For part (b) candidates had to complete an update query. This was well answered. The most common errors were to include quotation marks where they were not required or to be confused about the syntax of the first line, for example by including the fieldname instead of just the table name after the keyword UPDATE

Part (c) required candidates to write a query to retrieve data from the database. The vast
majority of candidates understood the basic structure of a query and were able to achieve some marks. Common mistakes were to include the Customer table in the FROM clause, which was not necessary, to miss out the part of the link between the Parcel and PriceBand tables that related to the parcel weight and to put the list into descending instead of ascending order. Some responses were seen that included (ASC) in brackets in the ORDER BY clause. The inclusion of brackets would prevent this from working; the brackets are included in mark schemes to indicate to examiners that the ASC is optional, they are not part of the language syntax.

Candidates needed to redesign part of the database to eliminate some redundancy that was identified for part (d). The majority of candidates recognised that a new relation was required to represent the postcodes, but the number who correctly designed the new relation and redesigned the Parcel relation was relatively small. The most common error was to include the house number in the new PostcodeLookup relation instead of leaving it in the Parcel relation.

Q6.
For question part (a) students were required to design a database from a description of its requirements. On previous papers, students have been asked to modify the design of a database but this is the first time that they have been asked to design a database from scratch. A good spread of marks was achieved. The most common mistake was to fail to include foreign keys in relations to link them to other relations. Additionally, some students who did make foreign keys did so the wrong way around, for example by putting ModuleCode into the Subject relation instead of putting SubjectName and Level into the Modules relation, thus meaning that the degree of the relationship was incorrect.

Over three quarters of students correctly identified the term composite key for part (b).

Q7.
This question part (a) required that students completed an Entity-Relationship diagram. The vast majority of students were able to achieve one mark but less than half achieved both.

For question part (b) students had to write a DDL definition of the Treatment relation. This question part was very well answered. Students need to ensure that they use correct SQL syntax and data types if they are to achieve full marks. A small number of students wrote definitions for a different table.

For part (c) students had to write an SQL query. This question part achieved an excellent range of responses. The requirement to search for appointments that fell between two dates seemed to cause some confusion, with students not realising that they could simply use the > and < operators. Some students used other operations to extract the year part from the date, and whilst some of these were correct and markworthy many were not. This year there appeared to be fewer students who lacked any knowledge of how to form a query correctly in SQL.

Q8.
Overall, students demonstrated a satisfactory ability to use SQL in question parts (a) to (c).
(a) This part was the worst tackled of the three. Commonly made mistakes when defining the table in this part were to use incorrect SQL data types, to include the field EngineSize, to declare RegistrationNumber to be an integer or to use non-SQL syntax. Some students attempted to put a constraint on the PolicyType to ensure
that it could only be one of the two valid possibilities. Students were not expected to know how to do this, so incorrect attempts at doing so were not penalised.
(b) In this part, just under half of students got full marks. Many students did not appear to really know the correct syntax of the SQL Update command, but achieved an easy mark by writing the first line of the command as "Update Vehicle". A common mistake was to fail to put quotation marks around the registration number or colour values.
(c) Responses to this part were disappointing, given the frequency that students have been asked to write SQL queries in the exam over the years, and the fact that this was a fairly simple example, involving only two tables. Only one third of candidates achieved full marks, though half managed to achieve three of the four marks. As in part (b), one common mistake was to miss quotation marks around the registration number. Other mistakes were to use the keyword GET instead of SELECT and to miss out the AND operator in the WHERE clause. Pleasingly, most students realised that a condition was needed to link the two tables together.
(d) Parts (i) to (iii) were about server side scripts. Just under half of candidates were able to achieve full marks for part (i) by explaining that a server side script was program code that was executed on a server. Some also recognised that the trigger for this could be the requesting of a web page and that the output would be a web page. Part (ii) was the least well tackled part, with only around one third of students achieving any marks. The Request object is used to fetch user-inputted data from the web server that it will have been sent when the web page that the data was entered on was submitted. The majority of students believed that the Request object was used to either query a database or that the execution of the command would trigger a request to the user to input data at that time rather than retrieving already input data. Almost all of the candidates got one of the two marks for part (iii) but few clearly explained that the output would be written to a web page which the web server would return to the web browser on the Police Officer's handheld terminal.
(e) This part was about extending the design of the database to store safety certificate information. The majority of candidates scored at least two of the three marks. Most candidates correctly identified that a new table would need to be created, what the fields in this table would need to be, and that CertificateNumberwould be the primary key. Those candidates who scored two but not three marks usually made a mistake with regard to how the new table would be linked to the existing database, stating that the CertificateNumber would be added to the Vehicle table as a foreign key. This solution would not work as this would only allow one certificate to be associated with each vehicle, and it was required that previous certificates could also be stored. The correct solution was to put the RegistrationNumber from the Vehicle table into the new table as a foreign key.

Q9.
Part (a) was much better answered than when a similar question about the meaning and purpose of normalisation was asked in 2010. As in 2010, the meaning was better addressed than the purpose, with many candidates able to give a good definition. A few candidates failed to achieve marks by just writing "it relies on the key, whole key and nothing but the key" without making clear what "it" was.

The most commonly made creditworthy point in relation to the purpose of normalisation was that it would eliminate data redundancy. Candidates need to be aware that there is a difference between redundant data and duplicated data. Redundant data is data that is unnecessarily duplicated, for example, storing a person's address twice because they have purchased two items. Data duplication is simply storing data twice. Primary key
values which are also foreign keys can be validly duplicated in a database without being redundant as they are required for the relationship. Therefore a goal of normalisation is to eliminate data redundancy but only to minimise data duplication.

Other good responses included eliminating the possibility of data inconsistency and preventing insert, update and delete anomalies.

Part (b) was moderately well answered with over two thirds of candidates achieving at least one mark, but only around a quarter achieving all three. Candidates who struggle to draw this type of diagram would benefit from looking at the relation definitions and establishing which fields are primary keys and which other relations these are used in as foreign keys.

Part (c) was well answered. In common with 2012, we only accepted valid SQL types and this year we also insisted on accurate SQL syntax, albeit allowing minor errors. The most common mistake was to not give a data type to the field that was the primary key.

For part (d) the SQL query was well tackled, but only around ten per cent of candidates achieved full marks. There is a discernible improvement in candidates' knowledge of SQL syntax. The most common mistakes were to either only include the Customer table in the FROM clause (presumably as both of the output fields were from this table) or to unnecessarily include the Furniture table in it.

In part (e) candidates were asked to correctly identify that the ALTER TABLE command was the appropriate one from the list of three that were given. The other two, incorrect, responses were both chosen more frequently than the correct response.

Q10.

Part (a): Just over half of students correctly identified that the key was a composite key. On this occasion, as the question did not refer directly to the example on the question paper, the answer compound key was also accepted - although it is important to note that these two terms are not equivalent.

Part (b): This question was not tackled well, but good students recognised that relations in a nörmalised database would have no repeating groups of attributes, no partia
dependencies and no non-key dependencies.
Part (c): As in previous years, students had difficulty completing the entity-relationship diagram with many incorrectly identifying the degree of the relationships. Only a third of students achieved both marks for this question part.

Part (d): A pleasing number of students (approximately a quarter) achieved the full five marks on this question part, which required that a query was written in SQL. Common errors made by those who did not score full marks were: to forget to cross-reference the tables using either linking conditions in the WHERE clause or INNER JOIN in the FROM clause, to forget to enclose the string "Lucas Bailey" in quotation marks, and to miss out the AND keywords if they were required in the WHERE clause.

Part (e): This is the first time that students have been asked to use the INSERT INTO command in SQL. Most students scored at least one mark, for recognising that the first line of the command needed to be INSERT INTO BOOK. More mistakes were made in the second line, which should have been 837023, "Kenyan Safari", "Karen Matu", "African Travel Guides". The most common error was to try to set the values by using assignment commands eg Author = "Karen Matu". Another commonly made mistake was to leave out the quotation marks for the values which were clearly strings. Students were awarded credit regardless of whether the value 837023 was in quotation marks as the data type
could have been either a string or numeric type.
Part (f): Students were required to redesign the database structure so that it would be able to store data about multiple copies of the same book whilst remaining normalised. Good responses recognised that a new relation would need to be created, which would contain the existing BookID and a new primary key Accession ID. The BookID in the Loans relation would then need to be replaced by the AccessionID. Alternative solutions that maintained normalisation were also accepted as were answers in which students rewrote new relations. The most common errors were to create a new primary key and store this in the Book relation, which would have resulted in redundant data (eg author details being repeated for each book), or to produce a solution which stored a quantity in stock field and updated this as books were loaned out. The latter would not have allowed the library to keep track of the individual copies of a book when loans were made.

Part (g)(i): This question part asked about hashing, which is used so that searching, adding and deleting records can be performed efficiently. Some students were able to explain the purpose of hashing adequately, but many confused hashing in this context with hashing for security purposes.

Part (g)(ii): This question part was moderately well answered, but most students did not include enough detail in their responses to achieve both of the available marks. In particular, whilst students recognised that the hash function would calculate a record position, many did not explain that the calculation would be based on the value in the record's key field.

Part (g)(iii): This question part was better answered than part (g)(ii). Many students recognised that a collision would occur when two key field values mapped to the same storage location and suggested an appropriate method, eg using the next available location or a linked list, to deal with the problem. A small number confused collisions in this context with collisions on a bus network.

Q11.
Part (a): Most candidates got at least one of the two marks for this question part. Good responses explained both the theoretical aspects of the problem with the order relation and also the real-world consequences of this. Some candidates mistakenly stated that the database contained partial key or non-key dependencies.

Part (b): Most candidates got some marks for this question, but full mark responses were quite rare. A small number of candidates ignored the instruction to draw three relationships and thus limited the maximum mark they were allowed to two out of three. The most common error was to show an incorrect degree for the relationship between the Product and Orderline relations.

Part (c): This question part was very well answered with most candidates getting some marks and many getting all three. The most common mistakes were to define ProductNumber as the primary key, but then to forget to give it a data type, and to declare Price to be an integer data type. When marking this question we allowed the use of data types that were taken from other languages rather than SQL, so long as they were clearly equivalent. In the future it is likely that we will require the use of correct SQL data types and syntax for full marks to be awarded to a response.

Part (d): A server-side script is a sequence of instructions that is executed on a web server to generate web pages dynamically at the time that a request to view a page is received. The majority of candidates showed a reasonable understanding of this and got at least one of the two available marks. Instead of explaining what a server-side script is, some candidates gave examples of usage or described them in such a way that they
might have been templates rather than executable programs. A common statement that was insufficient to be creditworthy was that the scripts were stored on a server or accessed from the server. This was not adequate as the same could be said of static HTML pages.

Part (e)(i): This question part was well answered. To achieve both marks, candidates had to make clear that the values were being retrieved from the web server or from the input made in the web browser.

Part (e)(ii): This question part was well answered with many candidates getting both available marks.

Part (e)(iii): Only a minority of candidates achieved the mark for this question part. Most recognised that a calculation would be performed and the result of this would be output, but to achieve the mark a candidate needed to explain that these results would be displayed on the web page or sent back to the client computer and displayed in the web browser.

Part (f): This question part was well answered. Most candidates clearly understood the structure of an SQL query and many scored high marks. The most common mistakes were to include spurious punctuation such as semicolons or commas in responses and to include the Order relation in the FROM clause, which was not required. The correct command to sort the results was ORDER BY ProductNumber, or alternatively, ORDER BY ProductNumber ASC. Some candidates put brackets around the ASC which is not correct syntax.

Q12.

For part (a) Many candidates could list suitable additional details required to be stored about members (apart from those given in the question stem) such as MemberID or unique user name and a password or the answer to a security question. However, few candidates then used these in the Member table definition, only listing those explicitly stated in the question. Many candidates correctly defined the table ParkingArea. Common errors included using the same identifier for the table and for one of the attributes, or just Name instead of ParkingAreaName. The member's name is also stored in this database, and so more descriptive identifiers need to be used. The car table definition should only consist of the CarRegistration and the LocationCode. Many candidates did not seem to notice that the primary key of the ParkingArea table was required, rather than inventing another attribute such as DesignatedParkingArea. The booking table needs to store the details required for a booking. Essential are MemberID, CarRegistrationNumber and StartDate Time, EndDateTime. It should also store the LocationCode where the car is to be picked up. The question stated that a BookingReferenceCode is given to the member; this is unique and can therefore be used as a primary key. Many candidates lost marks by adding redundant attributes, such as ParkingAreaName or not using the correct identifiers for the foreign keys. Candidates should note that bars over attributes is not a standard way of showing foreign keys. Foreign keys were not asked to be identified, but if they were, a wavy underline would be expected.

In part (b) many candidates completed the entity relationship diagram correctly. However, incorrect relationships included in the answer were taken into account and therefore such answers could not score full marks. A member can make many bookings, but each booking could only relate to one member. A car could be booked many times but each booking could only be made for one car at a time. Each parking area could have many cars parked there, but a car could only be parked at one parking area at any one time. Non-standard notations are still in evidence, the most ambiguous one being arrow heads. Candidates should be reminded of the standard notation of 'crow's feet'.

Part (c) of the question did not state explicitly which attributes should be shown in the list of bookings, so reasonable answers gained credit. The search criteria caused many candidates considerable difficulties. A possible answer was: WHERE StartDateTime BETWEEN 1/12/07 AND 31/12/07. Another creditable answer, using a wildcard, was WHERE StartDateTime LIKE "*/12/07". The most popular answer was: WHERE StartDateTime $>=1 / 12 / 07$ AND StartDateTime $<=31 / 12 / 07$. However, a common error was to miss out the attribute in the part after the AND.

Q13.

There were many very sloppy definitions of a relational database. There were fields and files, records all linked together, many by a primary key. A collection of tables was sufficient. A better answer was a collection of tables linked together by shared (or common) attributes. The impression was that some candidates knew they should use a particular collection of terms and simply strung them together in a random fashion.

A composite key is two or more attributes which are jointly used to uniquely identify a row of a table/relation. It is required in the table Booking as no one attribute alone can uniquely identify a row in this relation. Answers in context were also credited here, such as, that a particular cat may be booked in to the cattery on more than one date, and more than one cat would be booked in on any one date.

In part (c), it was not enough to say that a foreign key was a primary key in another table, nor that it was a primary key in one table that was an attribute in another. It had to be made clear that the common attribute was called a foreign key in the table where it was not the primary key. A correct description is that it is a field in one table that is, or that links to, a primary key in another. Many candidates gave the correct answer, but some showed confusion as to when to use the terms table, relation, entity, database and file and between attribute, entity, field and key.

Although many candidates gained the full 4 marks for part (d), a very common error was to put the 'answers' in the criteria row. The actual required criterion was CageNumber = 9 . CatName = Ginger, although incorrect in the context of the question, was not penalised on the presumption that the staff at the cattery could know the name of the sick cat but it seemed to demonstrate that many candidates did not have the practical experience of using a database that is required by the specification. Some candidates lost marks by not reading the question carefully. The question specifically asked for the cat name, but a significant number of candidates failed to include that field in their QBE.

As this paper is now marked electronically, candidates should not write too close to the edges of the pages. Their scripts are scanned in for later marking, and any writing too close to the fold, in particular, will be lost.

Q14.

(a) Some candidates did not identify the table clearly enough. Just writing down the number 2 was ambiguous because this could have referred to Figure 2 or Table 2. Most candidates correctly identified the Recipe table as the table not in first normal form. Far fewer candidates could describe correctly the reason. Many misunderstood the idea of repeating attributes and stated that certain ingredients were stored in the table more than once. Better candidates could explain that the data in the Ingredients column was not atomic, that is, there were multiple values in the Ingredients field.
(b) Few candidates could explain what fully normalised means. Only the best candidates could state that such tables would not contain any partial dependencies, or non-key dependencies. Most candidates knew that it is desirable to have fully
normalised tables because it eliminates data inconsistency and unnecessary data duplication.
(c) Most candidates gained credit for completing the relations Recipe and Foodltem. Many candidates listed the correct attributes for the relation Recipelngredient, but often did not gain credit because they also included many other attributes belonging to the other relations. This highlights the fact that candidates may rote learn the reasons for having fully normalised tables (see (b) above) but can not see that their answers do not in fact reflect the concept of eliminating unnecessary data duplication. Candidates should be aware that attribute identifiers should not contain spaces. Although this did not reduce the credit of their answers this time, in future papers this may reduce marks given.
(d) It was pleasing to see that many candidates gained high marks on this part of the question. Although this was not an easy question, most understood what was required, especially the Where part of the statement was well done. Common reasons for not gaining credit were still the prefixing of the table names with tbl. The names of the relations were clearly stated in the question part (c), and therefore these were expected to be used in the SQL statement. A minority of candidates also used the unconventional notation of attribute.tablename rather than tablename.attribute. When searching for a string value, this value must be enclosed in string delimiters. Different conventions were given credit, such as "Feta Salad" or 'Feta Salad'.

Q15.

Many candidates successfully answered part (a) by suggesting the use of primary and foreign keys or of shared or common attributes. Candidates who answered by giving an example from the tables shown were also credited. Those who just stated 'foreign keys' were not.

The entity Loan required a composite primary key. It was pleasing to see that many candidates realised that this was the case, although few gained both available marks by choosing BookID and DateOut. Some suggested a new field LoanID, which was not credited.

Indexing on other attributes in a table is used to speed up searches on that attribute and the validation on the attribute BookID was an example of the use of a check digit.

Q16.

(a) A very small minority of candidates could state the full name of the law: Copyright, Designs and Patents Act 1998. Credit was given to those who managed to state the term Copyright, but candidates should be reminded that this may not be sufficient in future examinations.
(b) Few candidates scored all three marks for the Entity-Relationship diagram. Very few were able to name the relationship. Some did not use the standard E-R diagram shapes.
(c) Although DDL statements were asked for in a previous paper, only a small minority of candidates were able to write the statements correctly to create the required tables. Credit was given for identifying the composite key in the Softwarelnstallation table. Candidates need to be reminded of the fact that identifiers should not contain spaces when naming attributes. The choice of identifiers should convey some meaning. For example the question required the date the software was purchased and the expiry date to be stored. Suitable attribute identifiers might be

PurchaseDate and ExpiryDate. Date on its own is not sufficient, especially if the data type used is also Date.
(d) The SQL statement was mostly correct, although few candidates gained all 4 marks. A common error still is to introduce more attributes in the SELECT part than required or include semicolons and other punctuation where not required. Some candidates did not include the ORDER BY part which was required to get a list of each computer with its installed software.

Q17.
This was a question comparing flat files to a relational database. The two main disadvantages of the original system were repetitive data entry leading to time wasting and an increased risk of errors, and data being stored in more than one place leading to a waste of storage space and the risk of data inconsistency. Credit was not given for suggestions such as what would happen if one of the staff were off sick, or how the problem of an out-of-stock item was handled, as these were not in the context of the question.

In part (b), many candidates ignored the premise of the question and simply stated that the computers were not networked. The examiners were looking for the fact that the files would have different structures or be using different software and so might be incompatible.

In part (c) it appeared that a number of candidates knew the definitions of these terms but did not gain marks because they did not take sufficient care with their answers. Attributes are not defined in terms of records; an attribute is a characteristic or property of an entity. There may be many fields that happen to be unique in a record but a primary key is a field which uniquely identifies the record, or an attribute which defines a particular instance of an entity. A foreign key is an attribute in one table that is a primary key in another table.

Most candidates correctly identified the primary key for the table Customer, but few realised that the table OrderLine needed two fields for unique identification. Most, but not all, identified one of the two foreign keys in the table OrderLine. For part (d) (iv), Mr Smith required to know what he had ordered on a particular date. The QBE grid therefore
required criteriā for Surname, FirstName and DateOfOrder, the latter in an acceptable date format, and then the Description and Quantity of the items he had ordered. PartNumber was accepted in place of Description. The only items that had to be shown in the resulting list were description and quantity, but candidates were not penalised if they opted to show all fields.

Q18.

(a) (i) Many candidates had the entity names the wrong way round and most candidates were unable to identify the label for C , with "one to many" a frequent, albeit insufficient, response.
(ii) The majority of candidates were able to identify the type of diagram correctly as an Entity Relationship Diagram
(b) This was the first time that DDL statements were required to create tables. Very few candidates seemed to have any experience of DDL and answered this part of the question using the standard table notation. Credit was given for correctly identifying the attributes and datatypes.

For the entity Hardwareltem, many candidates were able to identify the attributes and data types for two marks, however they failed to identify the primary key. The
use of "Autonumber" for a data type occurred too many times. Candidates were unable to identify the primary key in the EquipmentLoan table and most candidates used a made up primary key called LoanID rather than a composite key. Candidates were rarely able to successfully identify the foreign key.
(c) The SQL was generally well produced, with most candidates using SELECT, FROM, WHERE and ORDER BY clauses successfully. A majority of candidates failed to put the entity name before the InventoryReferenceNumber in the SELECT statement. Some candidates used the word "AND" between fields in the SELECT and between the table names in the FROM clause. Candidates are continuing to use "tbl" before the entity name, which is not appropriate. Many candidates were able to join the tables successfully in the WHERE clause and a few candidates made the mistake of using the wrong symbol in the DateRemoved > givenDate. Some candidates used the DateOfRemoval in the ORDER BY rather than Inventory Reference Number.

Q19.

(a) Most candidates could identify the CandidateNumber as the primary key for ResultsTable.
(b) Many candidates are under the misconception that the example table shown in the question contained redundant data. Certain values appeared more than once, but this does not necessarily imply redundancy. The fact that there was another Ali Patel with a different candidate number is not data duplication either. The inclusion of this record was intended to steer candidates to understanding the importance of CandidateNumber as the primary key.

Other misconceptions were that any database consisting of a single table was by definition not normalised. Those candidates who could state that there was a repeating group of attributes gained credit. This repeating group of attributes were ModuleCode, ExamSession, ModuleMark, Level, TotalMark and Grade (they contain multiple values).
(c) A pleasing number of candidates could correctly identify which attributes belonged - in which table for a fully normalised solution. However, it seemed to cause much invented new attributes to act as primary keys. This did not gain credit.
(d) There are still unconventional ER diagrams in use. Candidates should show one-to-many relationships as below:

(e) The SQL is now generally well done. The majority of candidates gained 3 or 4 out of the 5 marks for the SQL statement. Most did not appreciate that there needs to be two criteria in the WHERE clause: SELECT PupilForenames,PupilSurname, Grade

FROM Pupil, PupilGrade
WHERE Pupil.CandidateNumber = PupilGrade.CandidateNumber AND Level="A"
ORDER BY TotalMark DESC

Q20.
Very few candidates were able to identify repeating group as the reason why the table was unnormalised.

Many candidates stated that the reason was repeating attributes without thinking about what they were describing. "SubjectID value 4400 is repeated in the first and second rows of the table.

Therefore, this attribute is repeated in the table but this will happen in a fully normalised set of tables as well. Repeating group is the correct term to describe the state of the table. Other candidates gained this mark by implying repeating group. Their answers referenced one or more of SubjectID, SubjectName, ExamBoardSubjectOfficerName, NumberOfCandidates stating that for a given value of CentreNo these attributes contained multiple values.

Question (b) was answered reasonably well with most candidates forming relations that gained marks.

Candidates were also reasonably successful in (c) at identifying the relationships correctly.

Many candidates were able to structure a solution for (d) that employed SQL in an appropriate manner.

Several candidates placed relation names after attributes and not before as expected. These candidates were penalised only once for this error. Some candidates attached "tbl" to the beginning of every relation despite the relation names being given in the question. This is a practice that has no basis in database theory. These candidates were therefore peñalised once for this error. The commonest error was an error of omission. The SQE Where sub clause "ExaminationOfficer.CentreNo = Problem. CentreNo" was frequently missing from candidates' answers.

Very few candidates were unable to name the type of package most suitable for a mail merge operation, i.e. word processor, in (e).

Q21.

In a relational database, relationships are implemented by an attribute common to more than one table, linking those tables. This was often in the form of a primary key in one table being a foreign key in another. They are not implemented by entity relationship diagrams, and the link is between tables, not between databases. An attribute is a property or characteristic of an entity, or one piece of information about an item. A surprising number of candidates said that an attribute was a characteristic of an entity such as a field length or data type, or that it was a field, without further explanation.

The purpose of data validation is not to make sure the data is correct. Rather it checks that the data is appropriate or reasonable. Two candidates gained this mark for, respectively, 'To check that the data meets requirements' and 'To reduce the chance of incorrect data being entered.' A variety of validation rules were offered, including range checks, presence checks, format checks and actual examples of a validation check on a
sailing holiday data base such as the maximum number on one boat being less than a certain number. Many candidates scored their only mark for this question from this part.

The commonest unacceptable answer was input mask. An input mask shows how data should be entered into a field but would not check, for example, that data entered into a date field in the correct format is a valid date.

Q22.

Most candidates chose the ISBN for the primary key in the file, because it would uniquely define each record.

Q23.

A full definition of a primary key was required for part (a): an attribute or field that was used to uniquely identify a record. Many candidates achieved one or two of the key phrases, but too many candidates did not give all three. Again in part (b), a foreign key is an attribute or field in one table which is a primary key in another table. Better candidates also remarked that the foreign key is used to create a relationship between the tables.

Q24.

On the whole this question was well answered. However, many candidates failed to identify accurately the reason why the table is un-normalised. The correct reason is that the table contains a repeating group. Simply stating that the table contains 'repeating attributes' is not sufficiently precise. An alternative acceptable answer was 'one or more of Routeld, RouteName, RouteArea, RouteDescription contain multiple values'. Such an answer offered sufficient precision to be creditworthy.

Many candidates correctly identified the degree of the relationships. However, some of these candidates then failed to apply the rule that the primary key is exported into the many-side of the relationship when the relations are created. These candidates therefore failed to obtain the foreign key mark in part (b) (ii). Some candidates clearly had sufficient experience of SQL to write correct SQL statements. Others used incorrect syntax and therefore failed to gain full credit.

In part (e) many candidates attempted to name a package type as the question stipulated, but some gave brand names and so failed to gain credit.

Q25.

Many candidates correctly identified three relationships. In part (b) some candidates lost marks by not mapping the data requirements into the relations accurately. For example, some candidates used WardID and not the given WardName, NurseName and not the given NameOfNurse InCharge. Many candidates managed an acceptable SQL statement correctly joining the tables Patient and PatientMedicalCondition. The complete SQL statement was
Select Patient.Forename, Patient. Surname, PatientMedicalCondition.MedicalConditionNo
From Patient, PatientMedicalCondition
Where Patient. WardName = 'Victoria'
And Patient.PatientNo = PatientMedicalCondition.PatientNo

Q26.
Most candidates successfully identified ProductID as the primary key and were also able to justify their choice correctly that ProductID was likely to be unique.

Q27.
In the past, candidates have scored highly on a data analysis question of this type with full marks having been achieved by many candidates. Disappointingly, this time, very few candidates achieved full marks although the majority of the candidature managed at least twelve marks out of twenty. The analytical skill necessary for full marks in parts (a) and (b) was not in evidence on many scripts. In others, candidates omitted to underline the primary key despite being instructed to do so in the question stem or invented new attributes such as ProductCode. Few candidates identified the composite key correctly in part (b)(iv) ABCOrderNo, LineNo.

Candidates faired better at writing SQL with many candidates scoring at least four marks. Few candidates were able to construct a compound Where condition,

"Where Customer.Customerld = Order.Customerld
 And Order.OrderHasBeenDespatched = True"

but managed to score a mark for stating one of the two required conditions. Common errors were including extra attributes in the Select clause and omitting one of the two required tables in the From clause. The correct SQL statement was:
Select CustomerName
From Order, Customer
Where Where Customer.CustomerId = Order.CustomerId
And Order. OrderHasBeenDespatched = True
Order By ABCOrderNo

Q28.
(a) Some candidates confused serial and parallel transmission with simplex and duplex (not in the specification of CPTI). Many candidates just referred to data being transmitted one after the other and therefore did not gain credit. In serial transmission bits are sent one at a time along a single wire and in parallel transmission several bits are transferred simultaneously down several wires.
(b) Baud rate was mostly defined adequately as bits per second. Turning the question into the answer "rate of data transmission" is not worthy of credit. Some quality answers referred to the number of state changes of a signal in a secoñ.
(c) Most candidates correctly converted 38 into the binary pattern 0100110 , but many candidates do not appear to know that the most significant bit is on the left and therefore the 8 -bit pattern requested should read as 10100110. Many answers did not show eight bits as required. A pleasing number of candidates understood correctly that start and stop bits need to be different in asynchronous data transmission and therefore the bit pattern should be prefixed with 1 and 0 and suffixed with 00 or 11 respectively. Credit was given for the start bit at either end, as long as the stop bits were at the other end. Some candidates got so carried away with the start and stop bits that they forgot about the bit pattern for the character in between. Worrying was the fact that some candidates used symbols such as * or \# as alternatives to ones and zeros.

Q29.
Many candidates correctly identified the method as Optical Mark Recognition. Candidates who answered "Optical Mark Reader" referred to the device, not the method, and so were not rewarded. Some candidates answered incorrectly that a check digit checked that the chosen numbers were unique. An answer that stated that a check digit is an extra digit added to the transaction code obtained a mark. The mark scheme allocated a second mark to an answer that stated that the check digit was used to detect if data was
corrupted. The emphasis was on error detection, hence the non-specificity in stating what was being corrupted. Several candidates went into detail and described how the check digit is calculated using a modulo- II method. This was really answering more than was required for one mark, as this response described both what it is and how it is generated.

The majority of candidates correctly defined the term 'primary key'. However, several of these candidates then incorrectly identified "Point of Sale Identification Code" as the primary key for the transaction records instead of "Transaction Code". These candidates appeared to lack an understanding of the term 'transaction'.

In part (c) (iii) the better candidates realised that all the records have to be examined to find the ticket(s) with the winning numbers. These candidates then showed good knowledge of file organisations by answering "serial". Weaker candidates seemed to be unfamiliar with the term 'file Organisation', responding with answers such as "use a database or spreadsheet". Other successful candidates answered that if each transaction's chosen numbers were hashed, then the generated address could be used to store each transaction's details. After the draw, the winning numbers could be hashed to locate the transaction(s) that had won.

In part (d) many candidates did not appreciate the detail of the processing steps that have to take place if the computing system is to check if the ticket is a winning ticket. These candidates showed a distinct lack of insight into the operation of the computer. Their answers were superficial and from the perspective of the ticket holder not the computer system. The better answers were on a different analytical plain. These answers used appropriate technical terms e.g. ticked "scanned", "check digit" used to check accuracy of "scanning", "transaction code" sent to "central computer", correct "file" located/ "record" with given "transaction code" found or "transaction code" compared with winning "transaction codes", etc. Compare this with an answer pitched at the level of a ticket holder. "The numbers on the ticket are entered. The computer system checks if these are the winning numbers. The user is informed". Such an answer gained no marks.

Q30.

Apart from part (d) this question was answered quite well. The most common error in part (a) was to suggest the customer's name as the record key.

- In part (b) the candidates often gave unacceptable fields such as age or suggested fields that the customers would be unlikely to provide. This was a further example of the candidates' failure to apply their response to the application presented. Candidates tended to produce a list of fields that could possibly appear on a personal record with no regard as to the suitability of such data.

Most candidates were able to provide suitable fields for the car record in part (c).
The responses to part (d) were disappointing with few candidates showing that they understood how files could be linked. Many superficial answers were given, often it was suggested that a database could be used but there were usually no details as to how this might help.

Q31.
This was a popular question but not as well answered as similar questions in previous years. Pleasingly the majority of candidates did use the notation supplied in the question although some altered the given relationship to a many-to-many. No candidate was penalised for this error.
(a) Very few candidates were able to correctly show the degree of four relationships.
(b) Despite an incorrect relationship in part (a), the same candidates were often able to select the correct foreign key for the paired entities. Candidates seemed to be more at home working with tables (relations) than entities and their relationships.

Many candidates were able to describe the Producer, Venue and Client tables correctly. Some candidates used ID where ProducerID, VenueID and ClientID were required and therefore lost marks. Some candidates used Name where ProducerName and VenueName were required. Candidates must be precise when naming attributes.

Candidates need to ensure that their tables (relations) are normalised, i.e. contain no extra attributes. Several candidates committed normalisation errors that should have been easy to eliminate, such as including in VenueHired, the attribute VenueAddress in addition to the attribute VenueID.

Composite primary keys, as in previous years, are a source of difficulty for some candidates. The need to find a combination of attributes that is unique and minimal is not well understood or is a skill that not many candidates have mastered. Possession of the knowledge and ability to be able to select the correct combination of attributes is the hallmark of a good A Level student.
(c) This question revealed a lack of knowledge and experience in the use of SQL. A Select statement was required that performed a selection of data covering several attributes and from more than one table. The candidates' responses indicated little knowledge and experience beyond selection of data for one attribute within one table. Many candidates simply wrote four separate Select statements, one for each attribute involving a single table each time, either Client or Agent. Such answers were awarded credit but for the first Select statement only. The Where-clause was badly handled by the majority of candidates. To handle this correctly required experience of multiple table selections.

Q32.
Part (a) was frustrating to mark since examiners were often sure that candidates did know what a relational database was but were totally unable to describe one.

Most candidates were able to provide, the four attributes requested and gained full marks for this section of the question.

Different types of diagram were accepted but it was surprising how few candidates used the normal entity relationship diagrams. Those that did not use the standard type of diagram often had difficulty showing the relationship between the two entities.

A wide variety of sensible additional entities were given by candidates who then failed to identify the key field or give a relationship to one of the other entities. The most common additional entity was 'author' with a key field of author's name (accepted since we think, like Equity members, authors have to have unique names) and a relationship of one to many with the book entity.

Q33.

This was a very popular question with candidates producing good answers but fewer very high scoring scripts were seen, compared with similar questions on previous papers. This probably can be attributed to the slightly greater complexity of the question compared with previous years. To assist candidates, templates were provided on the question paper for the first time, with mixed results. Several candidates ignored the templates and constructed their own. Some removed the given one-to-many relationship from the
partially complete entity-relationship diagram and substituted one from many-to-many, one-to-one or many-to-one. Candidates were not penalised for doing this since no mark was available for the given relationship. Other candidates added the Substitution entity and its relationships to their diagram. The question did not include this entity. Candidates therefore gained no credit for these. On the whole, candidates struggled to identify five of the possible relationships correctly. Typically, candidates got three correct. Candidates frequently misunderstood entities and their relationships by taking a literal view. For example, the relation between Match and GoalScorer was interpreted as many-to-many since each match may have many goal scorers and goal scorers play in many matches.

In part (b) candidates performed better. Candidates who restricted their analysis to the given data requirements performed better than candidates who allowed their knowledge of football to influence their response. For example, one candidate listed for the entity Player the following attributes: Is He the Star Player, Is He the Man of the Match, How Did He Score. The attribute chosen as the primary key was How Did He Score.

Marks were lost for lack of precision. Where PlayerldNo was expected, some candidates offered IdNo expecting the examiner to fill in the missing detail. Match for MatchDate was another example and less forgivable since Match was also the name of one of the given entities. Composite keys caused difficulty for some candidates and often, when they were attempted the combination of attributes chosen, did not satisfy the requirement of uniqueness.

Several candidates failed to think carefully enough and plumped for MatchID where MatchDate satisfied the requirement for uniqueness. MatchDate is more useful for querying the database than Matchld. Candidates demonstrated a fairly good understanding of how to model relationships in tables. Foreign keys were chosen successfully by many candidates. However, this success did not correlate well, often, with the degree of the relationship chosen for part (a). Candidates did not seem to reflect on this discrepancy when it did arise and therefore failed to fix the error in their E-R diagram.

[^0]: Max 3

