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1.9.1Geometry of Complex Numbers

Geometry of Complex Addition & Subtraction
What does additionlooklike onan Argand diagram?

= |nCartesianformtwo complexnumbers are added byadding the real and imaginary parts
= Whenplotted onanArgand diagram the complexnumber z; + z,is the longerdiagonal of the
parallelogramwithvertices at the origin, z;, z,and z; + z,

Im /N

THE COMPLEX NUMBER
o _ 1 z+ w IS REPRESENTED ON
| AN ARGAND DIAGRAM AS
| THE DIAGONAL OF THE
. ' | | PARALLELOGRAM WITH
VERTICES O, z, w AND z +w

&V

15

What does subtractionlooklike onan Argand diagram?

= |nCartesianformthe difference of two complexnumbers is found by subtracting the real and
imaginary parts

= Whenplotted onanArgand diagram the complex number z; - z»is the shorterdiagonal of the
parallelogramwith vertices at the origin, z;, - zoand z; - z»
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Im /]

THE COMPLEX NUMBER

z —w IS REPRESENTED ON
AN ARGAND DIAGRAM AS
THE DIAGONAL OF THE
PARALLELOGRAM WITH
VERTICES z,-w AND z - w

Z
zZ—w 5 ‘
|
|
xW
S~
—W

REMEMBER TO PLOT THE POINT —w BEFORE DRAWING THE PARALLELOGRAM

What arethe geometricalrepresentations of complexadditionand subtraction?

= Let wbe agivencomplexnumberwithreal part aand imaginary part b
= w=a+bi

= |etzbe anycomplexnumberrepresented onanArgand diagram

= Adding wto zresults in zbeing:

a
= Translated byvector (b)

= Subtracting wfrom zresults in zbeing:

= Translated byvector(_a ‘

\-b)
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O Exam Tip

= Take extracare whenrepresentingasubtractionofacomplexnumbergeometrically

= Rememberthatyouranswerwill be atranslation of the shorterdiagonal of the
parallelogram made up by the two complexnumbers

@ Worked example
Considerthe complexnumbers z;=2 + 3iand z,=3 - 2i.

OnanArgand diagramrepresent the complexnumbers z;, z5, z; + zoand z; - z»

Ficet £ind Z.+tZ2 and Z -Z,

Z, + 2= (2+3) +(3-21) =8 +i
Z -2, = (2+3)) -(3-2i) =-1+S
lm
N
Zi—22=-1 45
X.5
_21>(:~
R XE +B2 = S+
> Re
D
3-24

The Seome_%r'\ca& Propecties Con \oe_
Seen b:ﬁ ao\d‘mj n -z, =-3+2%
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Geometry of Complex Multiplication & Division
What do multiplicationand divisionlooklike onan Argand diagram?

= The geometrical effect of multiplyingacomplexnumberbyareal number, a, will be an enlargement
ofthevectorbyscale factora
= Forpositive values of athe direction of the vectorwillnot change but the distance of the
pointfromthe originwillincrease byscale factora
= Fornegative values of athe direction of the vectorwill change and the distance of the point
fromthe originwillincrease byscale factora
= The geometricaleffect of dividingacomplexnumberbyareal number, a, willbe anenlargement of
the vectorbyscale factorl/a
= Forpositive values of athe directionof the vectorwillnot change but the distance of the
pointfromthe originwillincrease byscale factorl/a
= Fornegative values of athe directionof the vectorwillchange and the distance of the point
fromthe originwillincrease byscale factorl/a
= The geometrical effect of multiplyinga complexnumberbyiwillbe arotation of the vector?0°
counter-clockwise
B i(X+))=-y+xi
= The geometrical effect of multiplyinga complexnumberbyanimaginary number, ai, will be a
rotation90° counter-clockwise and anenlargement by scale factora
= ai(x+)i) =-ay+axi
= The geometricaleffect of multiplying ordividingacomplexnumberbyacomplex numberwill be
anenlargementand arotation
= Thedirectionof the vectorwillchange
= Theangle ofrotationis the argument
= Thedistance of the pointfromthe origin willchange
= Thescalefactoris the modulus

What does complexconjugationlooklike onan Argand diagram?

= The geometricaleffectofplottingacomplexconjugate onanArgand diagramis areflectionin
the real axis
= Therealpart of the complexnumberwill stay the same and the imaginary part will change sign

O Exam Tip

= Make sure yourememberthe transformations that different operations have oncomplex
numbers, this could helpyou checkyourcalculationsinanexam

Page 4 of 25
For more help visit our website www.exampaperspractice.co.uk



£l

Exam Papers Practice

@ Worked example

Considerthe complexnumberz=2-1.

OnanArgand diagramrepresent the complexnumbers z,3z,iz z*and zz*.

Fiest £ind 32, 12 and =*

z2 =2\

3z =3(2-1)= 6-3i

iz =1(2-1) = 2i-1% = 2i-(-) = | +2
z¥ = 2+

zz* = (2-)(2+1) = 4-i* = 4-(-) =5
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1.9.2Forms of Complex Numbers

Modulus-Argument (Polar) Form
Howdo Iwrite acomplexnumberin modulus-argument (polar)form?

= The Cartesianformofacomplexnumber,Z= X + iy, iswritteninterms of its real part, X, and its
imaginary part, ¥
= Ifweletr= |Z| and 0= arg Zz,thenitis possible to write acomplexnumberinterms ofits

modulus, I',and its argument, 0, called the modulus-argument (polar)form, givenby...
« z=r{cos O +isin 6)
= Thisis oftenwrittenas z=rcis 6
= Thisis giveninthe formulabook underModulus-argument (polar) form and exponential (Euler)
form
= [tis usualto give argumentsintherange — T < 0 <mor0<0<2m
= Negative arguments should be shown clearly

_ e.g.Z=2(COS (—?n)+isin (—?")) = 2 cis (—%)

T =k
= without simplifying COS(—?) to eitherCOS! —~~ orE

\3)
= The complex conjugate of rcis 8is rcis (-6)
= [facomplexnumberis giveninthe form Z= I{COS 0 —1sin 9),then itisnotinmodulus-
argument (polar) form due to the minus sign
= |tcanbe converted byconsideringtransformations of trigonometric functions
« —sinf = sin(—6) and cosd = cos(— 0)
« so z=r{cosf—isind) = z=r{cos(=0) +isin(—0)) = rcis(—0)

= To convertfrommodulus-argument (polar) formbackto Cartesianform, evaluate the real and

imaginary parts
1 V3
)+isin(—?n-))becomesz=2 —+il-——|=1-y31

R

3

» Eg.Z= 2(cos(— 5 5

Howdo Imultiplycomplexnumbersinmodulus-argument (polar)form?

= The mainbenefit of writingcomplexnumbers inmodulus-argument (polar) formis that they
multiply and divide veryeasily

= To multiply two complexnumbers in modulus-argument (polar) formwe multiply their moduli
and add their arguments
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*|aa|= 4|2
= +
= arg (Z1 Zz) arg Z1 arg Z2
n Soif z;=r;cis (01) and zo=rocis (02)
" Z71Z0=rir2Cis (01+02)

= Sometimes the new argument, (91 + 92,does notlieintherange — T < 0 < mor

0 < 0 < 2mifthisis beingused)

= Anout-of-range argument canbe adjusted by eitheradding or subtracting 2 Tt

21 7T

. E.g.lf01=Tand «92=77T then 01+02 = 3

» Thisiscurrentlynotintherange =T < 8 < T

JAL ST
= Subtracting 2Tl from — to give — ——,anew argumentis formed

6 6
= Thisliesinthe correctrange and represents the same angle onan Argand diagram

= Therules of multiplying the moduliand adding the arguments canalso be applied when...

= _multiplying three complexnumbers together, Z1 ZZZ3 ,ormore

= _findingpowers of acomplexnumber(e.g. Z? canbe written as 77)
= Therules formultiplication can be proved algebraically by multiplying z;= r;cis (67) by zo=rocis (62),
expandingthe brackets and usingcompound angle formulae

Howdo Idivide complexnumbersinmodulus-argument (polar)form?

= To divide two complexnumbers inmodulus-argument (polar) form, we divide their moduliand
subtract theirarguments

z| |ZI|
z, |ZZ|
zlw
- arg| ——|=arg 7 —arg z,

2)
n  Soif zz;=r;cis (01) and zo=rocis (02) then

zZ L
. Z—2=r—201s(01—92)

= Sometimes the new argument, 01 - 02,can lieoutoftherange — T < 0 < m(orthe range

0 < 0 < 2mifthisis beingused)

* Youcanadd orsubtract 2Tl to bring out-of-range arguments back inrange

= Therules fordivisioncanbe proved algebraically by dividing z;=r;cis (07) by zo=rocis (02) using
complexdivisionand the compound angle formulae

O Exam Tip

= Rememberthat rcis 8 onlyrefers to r{cos @+ isin 6)
= Ifyousee acomplexnumberwritteninthe form z = r(cos 0—isin 6)thenyouwillneed
to convertitto the correctformfirst
= Make sure you are confident with basic trigidentities to helpyoudo this

Page 7 of 25
For more help visit our website www.exampaperspractice.co.uk



£l

Exam Papers Practice

@ Worked example
. 3m T\ .. (T
letz, = 4/2 cis T4 @z, = ﬁ(cos(;) - 1s1n(7)>
a) Find Z,z,, givingyouranswerinthe form I(COSt9 + iSine) where0<0<2m
2, = (I-E as (3%:) , Ba = j_%-(C,OS (‘%) + iSiﬁ (‘%)) = ZJTZ— CiS ('KT)
foc z,2,, M\Alt'\e\:’ the mModull ond odd tre argumenks
(43z cis(C)(27Z eis(-3)

(+2)217) cis (B + (%)
= |6 c_is(%)

lel

Z2,2, = \L(COS% . isin%-)

b)
7

Find 7,giving youranswerinthe form 1‘(0080 + isine) where —TT<O< T
2

Z| o w
od A divide the woduli ' and = suldtract Hre arguments

= wmas(l) | el cis (3% - (-3))
22 27 cis(-%) 2Jz &

= Zc{s(ST"') S—Z: is nok in the

ranae - <O T
. 57L 8
= Zcis (T —ZI) SO0 sSubtrack 21T

to \or'ms ik wnto ronge

:_. = 2 (cos (BE) +isin(Z2))

2
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Exponential (Euler's) Form

Howdo we write acomplexnumberinEuler's (exponential)form?

= Acomplexnumbercanbe writteninEuler's formas Z= reiB

= Thisrelates to the modulus-argument (polar)formas Z= rei9= rcis 0
= Thisshows aclearlink between exponential functions and trigonometric functions
= Thisis giveninthe formulabookletunder'Modulus-argument (polar) formand exponential

(Euler) form'
= The argumentis normallygivenintherange 0<6 <2z
= Howeverinexponentialformotherarguments canbe used and the same conventionof

adding orsubtracting 2rcan be applied
Howdo we multiplyand dividecomplexnumbersin Euler's form?

= Euler's formallows forquick and easy multiplication and division of complex numbers

tz =relandz =re 2t

= Z1 rle an 22 rze then

i(0,+0,)

] X = 1 2
Z1 Z2 1‘11’26

= Multiplythe moduliand add the arguments

Z
LR
Z, L

= Divide the moduliand subtract the arguments
= Usingthese rules makes multiplying and dividing more thantwo complex numbers much easier

thanin Cartesianform
= Whenacomplexnumberis writtenin Euler's formitis easyto raise that complexnumberto a

power
» lfz=relf 722 =r2e210 gng 201 = (enit

What aresomecommonnumbersinexponentialform?

= As COS (2 7T) =1 andsin (2 7T) =0 you canwrite:
| =e2mi

= Usingthe sameideayoucanwrite:
s | =el=e2Mi=ed M= b= g2kmi
= where kis anyinteger

= As COS( 7T) = —1 and sin( 7T) = Oyou canwrite:
= efli= -]

= Ormore commonlywrittenas eiT+1=0
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= Thisisknownas Euler'sidentityand is considered by some mathematicians as the most
beautifulequation

= As COS(E\ =0 and sin(ﬂ\ =1 youcanwrite:

\2)/ \2)
. i=e?i

O Exam Tip

= Euler'sformallows foreasymanipulationof complexnumbers,inanexamitis oftenworth the
time convertingacomplexnumberinto Euler's formif further calculations need to be carried
out
= Familiarise yourself with which calculations are easierin which form, forexample
multiplicationand division are easiestin Euler's form but adding and subtracting are
easiestinCartesianform

@ Worked example

.
LN .
Considerthe complexnumber Z=2¢ 3 calculate Z2 givingyouranswerinthe form rett,

z" = <2e3'> =<2e3'><2e37'> =be 5i)
\MU\LE\Q\\\) Ehe modulc
odd  the arguments
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Conversionof Forms

Converting fromCartesianformtomodulus-argument (polar) formor exponential
(Euler's)form.

= To convertfrom Cartesianformto modulus-argument (polar) formorexponential (Euler) formuse

« r=|z| = X2+ )2
= and
» O=argz
Converting frommodulus-argument (polar) formor exponential (Euler's) formto
Cartesianform.

= To convertfrommodulus-argument (polar) formto Cartesianform
» Write z=r(cos0+isin@)as z=rcos0+(rsind )i
= Find the values of the trigonometric ratios rsindand rcos6
= Youmayneed to use yourknowledge of trigexact values
= Rewrite as z=a +biwhere
= g=rcosfand b=rsinb
= To convertfromexponential (Euler's)formto Cartesianformfirst rewrite z= re'®inthe formz=r
cos0+(rsindjiand thenfollow the steps above

Q Exam Tip

= Whenconvertingfrom Cartesianforminto PolarorEuler's form, always leave yourmodulus
and argument as anexactvalue
= Roundingvalues too earlymayresultininaccuracies lateron

Page 11 of 25
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@ Worked example

27

-1

Two complexnumbers are given byZ1 =2+ 2iand 22 =3¢ 3

a) Write Z1 inthe form rei?.

Z, =2+2
Find the modulus: |2, = \l 2* 4+ 2* = J_g— = 2L
Drow o skekeh +o help £ind  the arsumentr

Im
N
25 : 2+2i 9 =+D~ﬂ-‘(%) =+mn-\(‘)
i =
| &
% : > Re.
2
(A

=i
[
Z( = Zrie

b) Write 22 inthe form I(C059 + isine) and thenconvertitto Cartesianform.

T ‘
Z7_=3€.3‘ =3(C052_3£+\Sin335
3(-z +i ()

Z7_= %(-I + ‘1-3'|)
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1.9.3 Complex Roots of Polynomials

Complex Roots of Quadratics
What arecomplexroots?

= Aquadratic equationcaneitherhave two realroots (zeros),arepeated realrootornorealroots
= Thisdepends onthelocationofthe graph of the quadratic withrespectto the x-axis
= |f aquadratic equationhas no realroots we would previously have stated thatit has no real
solutions
= The quadratic equationwill have a negative discriminant
= This means takingthe squareroot of anegative number
= Complexnumbers provide solutions forquadratic equations that have no realroots

Howdo we solve a quadratic equation whenithascomplexroots?

= If aquadratic equationtakes the form ax’+ bx+ c=0it canbe solved by eitherusing the quadratic
formula orcompleting the square

» |faquadratic equationtakes the form ax’+ b=0it canbe solved byrearranging

= The propertyi=+-lis used

o Jma=yax—T1=Jax=1
= [fthe coefficients of the quadratic are realthenthe complexroots willoccurincomplex
conjugate pairs
= [fz=p+qi(g#0)isarootofaquadratic withreal coefficients thenz* =p-qgiisalso aroot
= Therealpart of the solutions will have the same value as the xcoordinate of the turningpointon
the graph of the quadratic
= Whenthe coefficients of the quadratic equation are non-real, the solutions willnot be complex
conjugates
= To solve theseyoucanuse the quadratic formula

Howdo we factorise a quadratic equationifithascomplexroots?

* |f we are given aquadratic equationinthe form az+ bz+ c=0,where a, b,and ce R, a#0we can
useits complexroots to writeitinfactorised form
= Use the quadratic formulato find thetworoots,z=p+giand z*=p-qi
= This means that z- (p+ gi) and z- (p- gi) must both be factors of the quadratic equation
» Therefore we canwrite aZ+ bz+ c=a(z- (p+ qi))(z- (- gi)
= This canberearranged into the form a(z- p- gi)(z- p+ qgi)

Howdo we find a quadratic equation when givenacomplexroot?

= |fwe are givenacomplexrootinthe formz=p+ giwe canfind the quadratic equationinthe form
aZ+bz+c=0,where a,b,and ceRr,a+0

Page 13 of 25
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= Weknowthatthe secondrootmustbe z*=p- gi
= This means that z- (p+ gi) and z- (p- gi) must both be factors of the quadratic equation
= Therefore we canwrite az2+ bz+c=(z- (p+ q))(z- (o - qi))
= Rewriting this as ((z- p) - gi))((z- p) + gi)) makes expanding easier
» Expandingthis gives the quadratic equation 2 - 2pz+(p?+ g9
= gz
= b=-2p
s c=p?4 P
= This demonstrates the important property (x - 2(x - z*) = X2 - 2Re (2 x+ |22

O ExamTip

= Onceyouhave yourfinalanswers youcancheckyourroots are correct by substitutingyour
solutions backinto the original equation

= Youshould getOifcorrect![Note:Ois equivalent to 0+ Oi]

Page 14 of 25
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a) Solve the quadratic equation Z-2z+5=0and hence, factorise Z-2z+5.

Use the q’uo.ciro\t'\c focmulon or completing the
S%\Ao«'e 1o find the Solutions.

0

Solutions of a quadratic Ey —o e b —4ac .
equation ax” +bx+c= = X_T’ a+

z -~ £ (-2 (1)(s)
2(1)

]
N
1 4
N"]
|

]
N
1+
.N‘c-ﬂ
1]

]
)
-+
x

N

Z, = 1+2 Z2.=1-2i I

-
I the solutions ore Z, =142 and 2, = |-
then the foctors must be =z -(1+2i) and z-(1-21)

22 -9z + S = (Z-(\-t?.\))(i—(\—li))

y 4
(-1-2)(=2-1+2i)
— B
b) Giventhatonerootofaquadratic equationis z=2 - 3i, find the quadratic equationinthe

form aZZ+ bz+ c=0,where a,b,and ce R, a+O0.

£ 2-2i s one vook Hren 2+37 must be the other
voot oand the tue fockors must be 2-(2-23) and

z2-(2+3).
(z - (2-30))z -(2+3) =0

ﬁ
(-2)+3)R-2)-3) =0
%/
(z-2)* - @iy =0
zt-b4z + b -q* =0, . a1 .1

2l-4z2 +\3 =0
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Complex Roots of Polynomials
Howmanyrootsshould a polynomialhave?

= We know that everyquadratic equationhas two roots (not necessarilydistinct orreal)
= Thisis aparticularcase of amore generalrule:
= Everypolynomialequationofdegree nhas nroots
= The nroots are notnecessarilyalldistinct and therefore we need to countanyrepeated
roots that mayoccurindividually
= |fapolynomial has realcoefficients,thenanynon-realroots willoccuras complex conjugate
pairs
= Soifthe polynomialhas anon-realcomplexroot,thenit will always have the complex
conjugate of thatrootas anotherroot
= Fromthe aboverules we canstate the following:

= Acubic equationofthe form ax> + bx2 + cx + d =0 canhave either:
= 3realroots
= Orlrealrootand acomplex conjugate pair

» Aquartic equation of the form ax4 + bx3 + ¢x? + dx + e = 0 willhave one of the following
cases forroots:
= 4realroots
= 2realand 2nonreal(acomplex conjugate pair)
= 4nonreal (two complex conjugate pairs)

How dowe solve a cubic equation with complexroots?

= Stepsto solve acubic equationwithcomplexroots
= [fwearetoldthatp+qgiisaroot,thenweknow p-giisalsoaroot
= This means that z- (p+ gi) and z- (p - gi) must both be factors of the cubic equation
= Multiplying the above factors togethergives us a quadratic factorof the form (AZ2+ Bz+C)
= We needto find the third factor(z- o)
= Multiply the factors and equate to ouroriginal equationto get
« (AZ2+Bz+O(z—a)=ax3+bx2+cx+d
= Fromthere either
= Expand and compare coefficients to find
= Oruse polynomialdivisionto find the factor(z-a)
= Finally,write yourthreeroots clearly

Howdowe solve a polynomial of anydegree with complexroots?

= Whenasked to find theroots of anypolynomialwhenwe are givenone,we use almost the same
method as foracubic equation
= State theinitialrootand its conjugate and write theirfactors as aquadratic factor(as above)
we will have two unknownroots to find, write these as factors (z- a) and (z- B)
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= Theunknownfactors also formaquadratic factor(z- a)(z-p)
= Thencontinue withthe steps fromabove, eithercomparing coefficients orusing polynomial
division
= [fusingpolynomial division,thensolve the quadratic factoryougetto find theroots a
and B

Howdo we solve polynomial equations withunknown coefficients?

= Stepsto find unknownvariables ina givenequation whengivenaroot:

= Substitute the givenroot p+qiinto the equationf(z)=0

= Expand and group togetherthe realand imaginary parts (these expressions willcontainour
unknownvalues)

= Solve as simultaneous equations to find the unknowns

= Substitute the valuesinto the originalequation

= Fromhere continue using the previously described methods forfindingotherroots forthe
polynomial

Howdo we factorise a polynomial when givenacomplexroot?

= |fwearegivenarootofapolynomialofanydegreeinthe formz=p+qi

= Weknow thatthe complex conjugate, z*=p- giis anotherroot

= We canwrite (z-(p+qi))and (z- (p- gi)) as two linearfactors

= Orrearrange into one quadratic factor

= This canbe multiplied out withanotherfactorto find furtherfactors of the polynomial
= Forhigherorderpolynomials more thanone root maybe given

= |f the furthergivenrootis complexthenits complex conjugate willalso be aroot

= Thiswillallowyouto find furtherfactors

O Exam Tip

= Youcanspeed up multiplyingtwo complex conjugate factors togetherby
= rewrite (z- (p+qgi))(z- (p- gi)) as ((z- p) - 9I))((z- p) +qi))
= Then((z-p)-q))((z- p)+qi)) =(z -p)? - (ai)? =(z - p)? + g2
= |fyouareworkingonacalculatorpaperread the questioncarefullyto see how muchofthe
workingneeds to be shown but always rememberto use your GDC to check yourworking
where youcan
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@ Worked example

Giventhatonerootofapolynomial p(x) = 25+ Z2-7z+65is 2 - 3i,find the otherroots.

|¢ 2-2; s one voob bBren 2427 must be tUne other
ot ond two of the fackors must be z-(2-31)

and. Z-(2+31)
Therefore o quadcabic foctor is 2¥-4z +13
Thece must exist o linear focdkor (a2 +b)

S ez +v)(%-4= +13) = 22 4+ 2* -Fz 4+ 45

Comyme coeféicients: oaz® = 13 Coefficient  of 23
a=|
12b = bD constant Coefficient
b=5
Therefore  btwe foctors ove Z2-(2-31) , 2-(2+3)
and (2 +5)

(z-(2-3))E-2+3)(@*+S)=0

z=(2%31) and 2=-5
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1.9.4 De Moivre'sTheorem

De Moivre'sTheorem

Whatis De Moivre’s Theorem?

De Moivre’s theorem canbe used to find powers of complexnumbers

ltstates thatfor z = rcis 0, z7 = [r(cos@+isind)]? = r"(cosnf + isinnb)
= Where
= 70
= risthemodulus, |4, rer*
= O istheargument,argz0eRr
" NeRr
InEuler's form this is simply:
. (reiﬁ)n= Meind
Inwords de Moivre’s theorem tells us to raise the modulus by the powerof nand multiply the
argument by n
Inthe formulabooklet de Moivre’s theoremis giveninboth polarand Euler’'s form:

- [r{cos@ +isinB)]” = r*(cosn@ + isinnh) = r"ein?= 7 cis nd

Howdo lusede Moivre’s Theorem toraiseacomplexnumberto apower?

If acomplexnumberisin Cartesianformyouwillneed to convertit to eithermodulus-argument
(polar)formorexponential (Euler’'s) form first

= This allows de Moivre’s theoremto be used onthe complexnumber
Youmayneed to convertit backto Cartesianformafterwards

If acomplexnumberisinthe form Z= I(COS(@) = iSin(H)) thenyouwillneed to rewrite it as
zZ= I(COS(— 9) + isin(— 0)) before applyingde Moivre’s theorem
Ausefulcase of de Moivre’s theoremallows us to easily find the reciprocal of acomplexnumber:

I 1 |
. — =—/(cos(—0)+isin(— )= —e1?
z r r

= Usingthe trigidentities cos(-0) =cos(0) and sin(-0) = - sin(0) gives

. é=z‘1=r_1[cos(9)—i5in(9)]= %[cos(e)-isin(‘))]

Ingeneral
« z71=r"1[cos(—nb) +isin(—nb)] = r~"[cos(nh) —isin(nh)]
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O ExamTip

= Youmaybe asked to find allthe powers of acomplexnumber, this means there willbe a
repeating pattern
= This canhappenif the modulus of the complexnumberis 1
= Keepaneyeonyouranswers andlook forthe pointatwhichtheybeginto repeat
themselves

@ Worked example

3
3 1.
Find the value of (T + El) , givingyouranswerinthe form a+ bi.

Write in  Polar form : .. (EY*’ (‘)" - I

T
I |
- [Te L _TE. 6
g = gou <?r6§—) = ton <J'3_) =6 i Re
6

-3
B ) =& ciel®) L
Aeply DetMowe’s Treocem 51( (%) = (s 3
Convect bock to Coctesian form :
27 cie (Z) = 27(cos (-%) +1 sm(-_r;_))
2%(0-i)

=271
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Proof of De Moivre's Theorem
Howis de Moivre’s Theorem proved?

= WhenwritteninEuler's formthe proof of de Moivre’s theoremis easyto see:

. Usingtheindexlawofbrackets:(I‘eie)“ = reind
= HoweverEuler'sformcannotbe used to prove de Moivre’s Theoremwhenitisinmodulus-
argument (polar) form
= Proofbyinductioncanbe used to prove de Moivre’s Theoremforpositive integers:
= To prove de Moivre’s Theoremforall positive integers, n
- [r(cos@ +isind)]” = r*(cosnf + isinné)
= STEPT:Proveitistrueforn=1
« [r(cos@+isind)]! = r'(cos1 @ + isinl ) = r(cos + isind)
= SodeMoivre’sTheoremis true forn=1
= STEP2:Assumeitistrue forn=k
« [r(cos@ +isind) ¥ = rk(cosk® + isink®)
= STEP 3:Showitistrue forn=k+1
« [r(cos@+isin@)]k+ 1 =([r(cosf +isind) ]¥)([r (cosh + isind)]')
= Accordingto the assumption thisis equal to
« (r*(cosk® + isink®)) (r(cosO + isind))
= Usinglaws of indices and multiplying out the brackets:
« = rk*1[coskfcosO +icos kO sinf + isinkOcosh + i2sinkfsin 6]
= Lettingi?=-1and collecting the real and imaginary parts gives:

- = rk+1[coskfcost — sinkfsinf + i(cos kO sinf + sinkfcosb)]

= Recognisingthat thereal partis equivalentto cos(kf +6)and the imaginary part is equivalent
to sin(k@ +0) gives
« (rcis@)k*+1=rk+1[cos(k+1)0 +isin(k + 1)6]
= So de Moivre’sTheoremis true forn=k+1
= STEP 4:Write aconclusionto complete the proof
= The statementis true forn=T1and ifitis true forn=kitis also true forn=k+1
= Therefore,bythe principle of mathematicalinduction, the resultis true forall positive
integers, n
= De Moivre’s Theoremworks forallrealvalues of n
= Howeveryoucould onlybe asked to proveitis true forpositive integers

O Exam Tip

= |earningthe standard proofforde Moivre's theoremwill also helpyouto memorise the steps
forproofbyinduction,anotherimportant topic foryour AAHLexam

Page 21 of 25
For more help visit our website www.exampaperspractice.co.uk



£l

Exam Papers Practice

@ Worked example

Show, using proof bymathematicalinduction, that foracomplexnumberz=rcisf and forall
positive integers, n,

= [r(cos@+isind)]" = r"(cosnf + isinnb)

Step | Prove it is true for n=1
7' = [t(cos® + isin6)]' = ¢'(cos 16 + isinl®) = (cosb + isin6)
Step 2 Assume it is true for n=k
“ = [r(cos® + isin ) = (cosk +isinke)
Step 3¢ Show ik is true for n=k+|

L K+l
z*" = [f(cose +1sin 9)] Addition Low of indices : ofal = o&*'

= ([((cose + isin 9)] K)([((COSG +isin 9):D

rExy! =+ '_) (Lsil\s 2

ossumpkion
[(K(cosk.e +18in ke)] r(cos6 + isin 9)]
**' (cosk® +isinkB)(cosO + isin ) .
—_—

==l

ve
= ¢**![coske cosb #cosk 6 (ising) + cosO (i sink ©) + i sink s{n9:|
R [coske cosO +1(cosk O sing +coshsink6)- sinkd smG] ) colleck
Re ord lm
ot I:caske cos0 - sinkBsinG +1 (Cosk Osing + smkecase]
~
= cos (ko +6) =sia(k6+6)
< [cos(ke +e) +1s8mn (ke +6):|

("+'|:c05<k+|)6+{s{n(k»f\)e] So true for n=k+|

S{e? 4: Write o conclusion:

De Mowre's btheorem (s true for n=1, ond if & & true
foc n=% (& < alse true for n=k+l,
Tnerefoce & is teue for ol nez'
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1.9.5Roots of Complex Numbers

Roots of Complex Numbers

Howdo Ifindthe squareroot of acomplexnumber?

= Thesquareroots of acomplexnumberwillthemselves be complex:

» jeifzZ2Z=a+bithenz=c+di
We canthensquare (C+ di) and equate it to the original complexnumber(a + bi), as theyboth
describe Z2:

« a+bi=(c+di)?
Thenexpand and simplify:

« a+bi=c?+2cdi+ d?i?

« a+bi=c2+2cdi— d?
As bothsides are equal we are able to equate real and imaginary parts:

= Equatingtherealcomponents: @ = c2—d? Q)

= Equatingthe imaginarycomponents: b=2cd (2
These equations canthenbe solved simultaneouslyto find the real and imaginarycomponents of
the squareroot

b

= |ngeneral,we canrearrange (2) to make 7 = Cand thensubstituteinto (1)

2d

= Thiswilllead to aquartic equationinterms of d;which canbe solved by making a substitution
to turnitinto a quadratic

The values of d canthenbe used to find the correspondingvalues of €,so we now have both

components of bothsquareroots (C+ di)
Note thatonerootwill be the negative of the otherroot

= g.ctdiand —c—di

Howdo luse de Moivre’s Theoremto findroots of acomplexnumber?

De Moivre’s Theorem states that acomplexnumberin modulus-argument form canbe raised to
the powerof nby
= Raisingthe modulus to the powerof nand multiplying the argument by n

= Wheninmodulus-argument (polar) formde Moivre’s Theoremcanthenbe used to find theroots

ofacomplexnumberby
= Takingthe nthroot ofthe modulus and dividing the argument by n
1

« itz = r{cosf+isinh) then ¥/ z = [z(cos(9+27'[k)+isin(49+27'rk))];
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« k=0,1,2,...,n—1

= Recallthatadding 2mto the argument of acomplexnumberdoes not change the
complexnumber

= Therefore we mustconsiderhow different arguments will give the same result

1
— 0 + 2k 0 + 2k
= This canberewrittenas H«/ zZz = rn (COS(T) + iSin(—H ))

= This canbe writteninexponential (Euler's) formas

0+2mk
-1

» For zZl=rell z= ¥ re 1
= The nthrootofcomplexnumberwillhave nroots withthe properties:

= The modulusis 1\1/; forallroots
= There willbe ndifferent arguments spaced at equalintervals onthe unit circle
= This creates some geometricallybeautiful results:
= Thefiveroots of acomplexnumberraised to the power5 will create aregularpentagon
onanArgand diagram
= Theeightroots of acomplexnumberraised to the power 8 will create aregularoctagon
onanArgand diagram
= The nroots of acomplexnumberraised to the power nwill create aregular n-sided
polygononanArgand diagram
= Sometimes youmayneed to use yourGDC to find theroots of acomplexnumber
= UsingyourGDC'’s store functionwillhelp whenenteringcomplicated modulus and arguments
= Make sureyouchoose the correctformto enteryourcomplexnumberin
= YourGDC should be able to give youthe answerinyourpreferred form

O ExamTip

= De Moivre's theoremmakes findingroots of complexnumbers veryeasy, but youmust be
confident converting from Cartesianforminto Polarand Euler's form first
= |fyouareinacalculatorexamyour GDC will be able to do this foryoubutyoumust clearly
show howyougotto youranswer
= Youmustalso be prepared to do this byhand inanon-calculatorpaper
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@ Worked example

a) Find the squareroots of 5 +12i, givingyouranswers in the form a+ bi.
ek 2% = 5+121 , then 2 = a +bi

22 =a® + 20bi + b¥i?

e 3
te-l
=o' +20bi - b*

Trecefore S +121 = (o-b*) + 2abi
Equote the real components: o' -b* =S 0]
Equoke the imoginacy Components : 20b = |2 ®
Solve the simultoneous equations @ & = % > (‘T)l -b* =5
b*+ 5b*-36=0
(b* + A)(b*-4) =0

b*=-9 o b* =4

no real
Solutions b=1t2
o =*3

Zi= 3+21 zz=-3-z§-l

b) Solve the equation £2=—-4+ 4«/ 31 givingyouranswers inthe formrcis 6.

Convect =% + k131  to Folar form:
P TS S 3 S YA

s 1.
¢ 2 “J2 e

e = 7[.-('}-0«\-‘(

b 4+ 4130 = %c%s(%}

2% =-4 + &30

z =3|—‘r + 431

(8 cisl2l)’
(%) cis(Z1)

Ocder 3 so there oace 3 vooks, wse k=0,1,7:

J

z= 2Zas (&) , 2 ¢s (2 | ZC'\S(“Z.TC)
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