



# 1.8 Eigenvalues & Eigenvectors

### Contents

- ✤ 1.8.1 Eigenvalues & Eigenvectors
- ✤ 1.8.2 Applications of Matrices



# 1.8.1 Eigenvalues & Eigenvectors

### **Characteristic Polynomials**

Eigenvalues and eigenvectors are properties of square matrices and are used in a lot of real-life applications including geometrical transformations and probability scenarios. In order to find these eigenvalues and eigenvectors, the characteristic polynomial for a matrix must be found and solved.

#### What is a characteristic polynomial?

- For a matrix A, if  $Ax = \lambda x$  when x is a non-zero vector and  $\lambda$  a **constant**, then  $\lambda$  is an **eigenvalue** of the matrix  $oldsymbol{A}$  and  $oldsymbol{x}$  is its corresponding **eigenvector**
- If  $Ax = \lambda x \Rightarrow (\lambda I A)x = 0$  or  $(A \lambda I)x = 0$  and for x to be a non-zero vector,  $\det\left(\lambda \boldsymbol{I}-\boldsymbol{A}\right)=0$
- The characteristic polynomial of an  $n \times n$  matrix is:

$$p(\lambda) = \det (\lambda I - A)$$

In this course you will only be expected to find the characteristic equation for a  $2 \times 2$  matrix and this will always be a **quadratic** 

#### How do I find the characteristic polynomial?

STEP1

Write  $\lambda I - A$ , remembering that the identity matrix must be of the same order as A

STEP 2

Find the determinant of  $\lambda I - A$  using the formula given to you in the formula booklet 

$$\det \mathbf{A} = |\mathbf{A}| = ad - bc$$

 STEP 3 Re-write as a polynomial







### **Eigenvalues & Eigenvectors**

#### How do you find the eigenvalues of a matrix?

- The eigenvalues of matrix  $oldsymbol{A}$  are found by solving the **characteristic polynomial** of the matrix
- For this course, as the characteristic polynomial will always be a **quadratic**, the polynomial will always generate one of the following:
  - two real and distinct eigenvalues,
  - one real repeated eigenvalue or
  - **complex** eigenvalues

#### How do you find the eigenvectors of a matrix?

- A value for  $oldsymbol{x}$  that satisfies the equation is an **eigenvector** of matrix  $oldsymbol{A}$
- Any scalar multiple of **X** will also satisfy the equation and therefore there an **infinite number** of eigenvectors that correspond to a particular eigenvalue
- STEP1

Write 
$$\boldsymbol{X} = \begin{pmatrix} X \\ y \end{pmatrix}$$

STEP 2

Substitute the eigenvalues into the equation  $(\lambda I - A) \mathbf{x} = \mathbf{0}$ , and form two equations in terms of  $\mathbf{X}$  and  $\mathbf{Y}$ 

STEP 3

There will be an infinite number of solutions to the equations, so choose one by letting one of the variables be equal to  $1\,$  and using that to find the other variable









b)



Find the characteristic polynomial  $p(\lambda) = det \begin{pmatrix} \lambda - 1 & 5 \\ -2 & \lambda - 3 \end{pmatrix}$   $= (\lambda - 1)(\lambda - 3) - (5)(-2)$   $= \lambda^{2} - 3\lambda - \lambda + 3 + 10$   $p(\lambda) = \lambda^{2} - 4\lambda + 13$ 

solve the characteristic polynomial to find the eigenvalues by hand or using the GDC

$$\rho(\lambda) = \lambda^{2} - 4\lambda + 13 = 0$$

$$(\lambda - 2)^{2} - 4 + 13 = 0$$

$$(\lambda - 2)^{2} = -9$$

$$\lambda = 2 \pm \sqrt{-9}$$

$$\lambda = 2 \pm 3i$$



Use the eigenvalues in the equation  $(\lambda I - A) \propto = 0$  to find the eigen vectors For  $\lambda = 2 + 3i$   $\Rightarrow \begin{pmatrix} (2+3i) \\ 0 \\ 1 \end{pmatrix} - \begin{pmatrix} 1 \\ -5 \\ 2 \\ 3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$  $\left( \begin{pmatrix} 2+3i & 0 \\ 0 & 2+3i \end{pmatrix} - \begin{pmatrix} 1 & -5 \\ 2 & 3 \end{pmatrix} \right) \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$  $\begin{pmatrix} 1+3i & 5\\ -2 & -1+3i \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ (1+3i)x + 5y = 0-2x + (-1+3i)y = 0 } 2x = (-1+3i)y So the equations can be simplified to the same thing The eigenvector associated with  $\lambda = 2 + 3i$  is any multiple of (-1+3i) For  $\lambda = 2 - 3i$   $\Rightarrow (2 - 3i) \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} - \begin{pmatrix} 1 & -5 \\ 2 & 3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$  $\begin{pmatrix} \begin{pmatrix} 2-3i & 0 \\ 0 & 2-3i \end{pmatrix} - \begin{pmatrix} 1 & -5 \\ 2 & 3 \end{pmatrix} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$  $\begin{pmatrix} 1-3i & 5\\ -2 & -1-3i \end{pmatrix} \begin{pmatrix} x\\ y \end{pmatrix} = \begin{pmatrix} 0\\ 0 \end{pmatrix}$ (1-3i)x + 5y = 0-2x + (-1-3i)y = 02x = (-1-3i)yThe eigenvector associated with  $\lambda = 2 - 3i$  is any multiple of  $\begin{pmatrix} -1-3i\\ 2 \end{pmatrix}$ 



# 1.8.2 Applications of Matrices

### Diagonalisation

#### What is matrix diagonalisation?

- A non-zero, square matrix is considered to be diagonal if all elements not along its leading diagonal are zero
- A matrix P can be said to diagonalise matrix M, if D is a diagonal matrix where  $D = P^{-1}MP$
- If matrix M has eigenvalues  $\lambda_1$ ,  $\lambda_2$  and eigenvectors  $x_1$ ,  $x_2$  and is diagonisable by P, then
  - $P = (x_1 x_2)$ , where the first column is the eigenvector  $x_1$  and the second column is the

eigenvector  $X_2$ 

$$\boldsymbol{D} = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$$

- You will only need to be able to diagonalise  $2 \times 2$  matrices
- You will only need to consider matrices with real, distinct eigenvalues
  - If there is only one eigenvalue, the matrix is either already diagonalised or cannot be diagonalised
  - Diagonalisation of matrices with complex or imaginary eigenvalues is outside the scope of the course







### **Matrix Powers**

One of the main applications of diagonalising a matrix is to make it easy to find **powers** of the matrix, which is useful when modelling transient situations such as the movement of populations between two towns.

#### How can the diagonalised matrix be used to find higher powers of the original matrix?

• The equation to find the diagonalised matrix can be re-arranged for **M**:

$$D = P^{-1}MP \Rightarrow M = PDP^{-1}$$

• Finding higher powers of a matrix when it is diagonalised is straight forward:

$$\begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}^n = \begin{pmatrix} a^n & 0 \\ 0 & b^n \end{pmatrix}$$

• Therefore, we can easily find higher powers of the matrix using the **power formula** for a matrix found in the formula booklet:

$$\boldsymbol{M}^{n} = \boldsymbol{P} \boldsymbol{D}^{n} \boldsymbol{P}^{-1}$$



Worked example  
The matrix 
$$M = \begin{pmatrix} 3 & -2 \\ -4 & 1 \end{pmatrix}$$
 has the eigenvalues  $\lambda_1 = -1$  and  $\lambda_2 = 5$  with eigenvectors  
 $\mathbf{x}_1 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$  and  $\mathbf{x}_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$  respectively.  
a) Show that  $M^n$  can be expressed as  
 $M^n = -\frac{1}{3} \begin{pmatrix} (-(-1)^n - 2(5)^n) & (-(-1)^n + (5)^n) \\ (-2(-1)^n + 2(5)^n) & (-2(-1)^n - (5)^n) \end{pmatrix}$   
Find D, P and P<sup>n</sup>  
 $P = \begin{pmatrix} -1 & 0 \\ 0 & 5 \end{pmatrix} = P = \begin{pmatrix} 1 & 1 \\ 2 & -1 \end{pmatrix} \Rightarrow P^n = -\frac{1}{3} \begin{pmatrix} -1 & -1 \\ -2 & -1 \end{pmatrix}$   
Use the matrix power formula from the formula isotiet  
Power formula for  $M^n = PD^nP^1$  P is the matrix of eigenvectors and D  
is the diagonal matrix of eigenvectors  
 $M^n = -\frac{1}{3} \begin{pmatrix} 1 & 1 \\ 2 & -1 \end{pmatrix} \begin{pmatrix} -1 & 0 \\ 0 & 5 \end{pmatrix} \begin{pmatrix} -1 & -1 \\ -2 & -1 \end{pmatrix}$   
 $H^n = -\frac{1}{3} \begin{pmatrix} 1 & 1 \\ 2 & -1 \end{pmatrix} \begin{pmatrix} -1 & 0 \\ 0 & 5 \end{pmatrix} \begin{pmatrix} -1 & -1 \\ -2 & -1 \end{pmatrix}$   
 $H^n = -\frac{1}{3} \begin{pmatrix} 1 & 1 \\ 2 & -1 \end{pmatrix} \begin{pmatrix} -1 & 0 \\ 0 & 5 \end{pmatrix} \begin{pmatrix} -1 & -1 \\ -2 & -1 \end{pmatrix}$   
 $H^n = -\frac{1}{3} \begin{pmatrix} 1 & 1 \\ 2 & -1 \end{pmatrix} \begin{pmatrix} -1 & 0 \\ 0 & 5 \end{pmatrix} \begin{pmatrix} -1 & -1 \\ -2 & -1 \end{pmatrix}$   
 $H^n = -\frac{1}{3} \begin{pmatrix} 1 & 1 \\ 2 & -1 \end{pmatrix} \begin{pmatrix} -1 & 0 \\ 0 & 5 \end{pmatrix} \begin{pmatrix} -1 & -1 \\ 0 & 5 \end{pmatrix} \begin{pmatrix} -1 & -1 \\ 0 & 5 \end{pmatrix} \begin{pmatrix} -1 & -1 \\ 0 & 5 \end{pmatrix} \begin{pmatrix} -1 & -1 \\ 0 & 5 \end{pmatrix} \begin{pmatrix} -1 & -1 \\ 0 & 5 \end{pmatrix} \begin{pmatrix} -1 & -1 \\ 0 & 5 \end{pmatrix} \begin{pmatrix} -1 & -1 \\ 0 & 5 \end{pmatrix} \begin{pmatrix} -1 & -1 \\ 0 & 5 \end{pmatrix} \begin{pmatrix} -1 & -1 \\ 0 & 5 \end{pmatrix} \begin{pmatrix} -1 & -1 \\ 0 & 5 \end{pmatrix} \begin{pmatrix} -1 & -1 \\ 0 & 5 \end{pmatrix} \begin{pmatrix} -1 & -1 \\ 0 & 5 \end{pmatrix} \begin{pmatrix} -1 & -1 \\ 0 & 5 \end{pmatrix} \begin{pmatrix} -1 & -1 \\ 0 & 5 \end{pmatrix} \begin{pmatrix} -1 & -1 \\ 0 & 5 \end{pmatrix} \begin{pmatrix} -1 & -1 \\ 0 & 5 \end{pmatrix} \begin{pmatrix} -1 & -1 \\ 0 & 5 \end{pmatrix} \begin{pmatrix} -1 & -1 \\ 0 & 5 \end{pmatrix} \begin{pmatrix} -1 & -1 \\ 0 & 5 \end{pmatrix} \begin{pmatrix} -1 & -1 \\ 0 & 5 \end{pmatrix} \begin{pmatrix} -1 & -1 \\ 0 & 5 \end{pmatrix} \begin{pmatrix} -1 & -1 \\ 0 & 5 \end{pmatrix} \begin{pmatrix} -1 & -1 \\ 0 & 5 \end{pmatrix} \begin{pmatrix} -1 & -1 \\ 0 & 5 \end{pmatrix} \begin{pmatrix} -1 & -1 \\ 0 & 5 \end{pmatrix} \begin{pmatrix} -1 & -1 \\ 0 & 5 \end{pmatrix} \begin{pmatrix} -1 & -1 \\ 0 & 5 \end{pmatrix} \begin{pmatrix} -1 & -1 \\ 0 & 5 \end{pmatrix} \begin{pmatrix} -1 & -1 \\ 0 & 5 \end{pmatrix} \begin{pmatrix} -1 & -1 \\ 0 & 5 \end{pmatrix} \begin{pmatrix} -1 & -1 \\ 0 & 5 \end{pmatrix} \begin{pmatrix} -1 & -1 \\ 0 & 5 \end{pmatrix} \begin{pmatrix} -1 & -1 \\ 0 & 5 \end{pmatrix} \begin{pmatrix} -1 & -1 \\ 0 & 5 \end{pmatrix} \begin{pmatrix} -1 & -1 \\ 0 & 5 \end{pmatrix} \begin{pmatrix} -1 & -1 \\ 0 & 5 \end{pmatrix} \begin{pmatrix} -1 & -1 \\ 0 & 5 \end{pmatrix} \begin{pmatrix} -1 & -1 \\ 0 & 5 \end{pmatrix} \begin{pmatrix} -1 & -1 \\ 0 & 5 \end{pmatrix} \begin{pmatrix} -1 & -1 \\ 0 & 5 \end{pmatrix} \begin{pmatrix} -1 & -1 \\ 0 & 5 \end{pmatrix} \begin{pmatrix} -1 & -1 \\ 0 & 5 \end{pmatrix} \begin{pmatrix} -1 & -1 \\ 0 & 5 \end{pmatrix} \begin{pmatrix} -1 & -1 \\ 0 & 5 \end{pmatrix} \begin{pmatrix} -1 & -1 \\ 0 & 5 \end{pmatrix} \begin{pmatrix} -1 & -1 \\ 0 & 5 \end{pmatrix} \begin{pmatrix} -1 & -1 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} -1 & 0 \\ 0 & -1$ 

b) Hence find  $M^5$ .



Substitute 
$$n = 5$$
  

$$M^{s} = -\frac{1}{3} \begin{pmatrix} (-(-1)^{s} - 2 (5)^{s}) & (-(-1)^{s} + (5)^{s}) \\ (-2(-1)^{s} + 2(5)^{s}) & (-2(-1)^{s} - (5)^{s}) \end{pmatrix}$$

$$= -\frac{1}{3} \begin{pmatrix} -6249 & 3126 \\ 6252 & -3123 \end{pmatrix}$$

$$M^{s} = \begin{pmatrix} 2083 & -1042 \\ -2084 & 1041 \end{pmatrix}$$

For more help, please visit <u>www.exampaperspractice.co.uk</u>