

Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme

Suitable for all boards

Designed to test your ability and thoroughly prepare you

1.8 Eigenvalues & Eigenvectors

IB Maths - Revision Notes

AI HL

1.8.1 Eigenvalues & Eigenvectors

Characteristic Polynomials

Eigenvalues and **eigenvectors** are properties of square matrices and are used in a lot of real-life applications including geometrical transformations and probability scenarios. In order to find these eigenvalues and eigenvectors, the **characteristic polynomial** for a matrix must be found and solved.

What is a characteristic polynomial?

- For a matrix A, if $Ax = \lambda x$ when x is a non-zero vector and λ a **constant**, then λ is an **eigenvalue** of the matrix A and x is its corresponding **eigenvector**
- If $A\mathbf{x} = \lambda \mathbf{x} \Rightarrow (\lambda \mathbf{I} \mathbf{A})\mathbf{x} = 0$ or $(\mathbf{A} \lambda \mathbf{I})\mathbf{x} = 0$ and for \mathbf{X} to be a non-zero vector, det $(\lambda \mathbf{I} - \mathbf{A}) = 0$
- The characteristic polynomial of an $n \times n$ matrix is:

$$p(\lambda) = \det(\lambda I - A)$$

 In this course you will only be expected to find the characteristic equation for a 2 × 2 matrix and this will always be a quadratic

 $\det \mathbf{A} = |\mathbf{A}| = ad - bc$

How do I find the characteristic polynomial?

STEP1

Write $\lambda I - A$, remembering that the identity matrix must be of the same order as A

STEP 2

```
Find the determinant of \lambda I-A using the formula given to you in the formula booklet
```

Copyright © 2024 STEP 3 © 2024 Exam Papers Practice Re-write as a polynomial

😧 Exam Tip

• You need to remember the characteristic equation as it is not given in the formula booklet

© 2024 Exam Papers Practice

Eigenvalues & Eigenvectors

How do you find the eigenvalues of a matrix?

- The eigenvalues of matrix **A** are found by solving the **characteristic polynomial** of the matrix
- For this course, as the characteristic polynomial will always be a **quadratic**, the polynomial will always generate one of the following:
 - two real and distinct eigenvalues,
 - one real repeated eigenvalue or
 - complex eigenvalues

How do you find the eigenvectors of a matrix?

- A value for **X** that satisfies the equation is an **eigenvector** of matrix **A**
- Any scalar multiple of **X** will also satisfy the equation and therefore there an **infinite number** of eigenvectors that correspond to a particular eigenvalue
- STEP1

Write
$$\mathbf{x} = \begin{pmatrix} X \\ Y \end{pmatrix}$$

STEP 2

Substitute the eigenvalues into the equation $(\lambda I - A)x = 0$, and form two equations in terms

of X and $ar{y}$

STEP 3

There will be an infinite number of solutions to the equations, so choose one by letting one of the variables be equal to 1 and using that to find the other variable

Page 3 of 9 For more help visit our website www.exampaperspractice.co.uk

Find the eigenvalues and associated eigenvectors for the following matrices.

Page 4 of 9 For more help visit our website www.exampaperspractice.co.uk

Find the characteristic polynomial

$$P(\lambda) = det \begin{pmatrix} \lambda - 1 & 5 \\ -2 & \lambda - 3 \end{pmatrix}$$
$$= (\lambda - 1)(\lambda - 3) - (5)(-2)$$
$$= \lambda^2 - 3\lambda - \lambda + 3 + 10$$
$$P(\lambda) = \lambda^2 - 4\lambda + 13$$

Solve the characteristic polynomial to find the eigenvalues by hand or using the CDC

$$p(x) = \lambda^{x} - (\lambda + 1)^{z} = 0$$

$$(\lambda - 2)^{x} - (4 + 1)^{z} = 0$$

$$(\lambda - 2)^{x} - (4 + 1)^{z} = 0$$

$$(\lambda - 2)^{x} - (4 + 1)^{z} = 0$$

$$\lambda = 2 \pm 3i$$
We the eigenvalues in the equation $(\lambda I - \lambda) = 0$ to the field the eigenvalues in the equation $(\lambda I - \lambda) = 0$ to the field eigenvalues in the equation $(\lambda I - \lambda) = 0$

$$((z + 3i) - (z - 3))(z)(z) = (0)$$

$$((z + 3i) - (z - 3))(z)(z) = (0)$$

$$((z + 3i) - (z - 3))(z)(z) = (0)$$

$$((z + 3i) - (z - 3))(z)(z) = (0)$$

$$((z + 3i) - (z - 3))(z)(z) = (0)$$

$$((z + 3i) - (z - 3))(z)(z) = (0)$$

$$((z + 3i) - (z - 3))(z)(z) = (0)$$

$$((z + 3i) - (z - 3))(z)(z) = (0)$$

$$((z + 3i) - (z - 3))(z)(z) = (0)$$

$$((z + 3i) - (z - 3))(z)(z) = (0)$$

$$((z + 3i) - (z - 3))(z)(z) = (0)$$

$$((z + 3i) - (z - 3))(z)(z) = (0)$$

$$((z + 3i) - (z - 3))(z)(z) = (0)$$

$$((z + 3i) - (z - 3))(z)(z) = (0)$$

$$((z + 3i) - (z - 3))(z)(z) = (0)$$

$$((z + 3i) - (z - 3))(z)(z) = (0)$$

$$((z + 3i) - (z - 3))(z)(z) = (0)$$

$$((z + 3i) - (z - 3))(z)(z) = (0)$$

$$((z + 3i) - (z - 3))(z)(z) = (0)$$

$$((z + 3i) - (z - 3))(z)(z) = (0)$$

$$((z + 3i) - (z - 3))(z)(z) = (0)$$

$$((z + 3i) - (z - 3))(z)(z) = (0)$$

$$((z + 3i) - (z - 3))(z)(z) = (0)$$

$$((z + 3i) - (z - 3))(z)(z) = (0)$$

$$((z + 3i) - (z - 3))(z)(z) = (0)$$

$$((z + 3i) - (z - 3))(z)(z) = (0)$$

$$((z + 3i) - (z - 3))(z)(z) = (0)$$

$$((z + 3i) - (z - 3))(z)(z) = (0)$$

$$((z + 3i) - (z - 3))(z)(z) = (0)$$

$$((z + 3i) - (z - 3))(z)(z) = (0)$$

$$((z + 3i) - (z - 3))(z)(z) = (0)$$

$$(z + (z + 3i) - (z - 3))(z)(z) = (0)$$

$$(z + (z + 3i) - (z - 3))(z)(z) = (0)$$

$$(z + (z + 3i) - (z - 3))(z)(z) = (0)$$

$$(z + (z + 3i) - (z - 3))(z)(z) = (0)$$

$$(z + (z + 3i) - (z - 3))(z)(z) = (0)$$

$$(z + (z + 3i) - (z - 3))(z)(z) = (0)$$

$$(z + (z + 3i) - (z - 3))(z)(z) = (0)$$

$$(z + (z + 3i) - (z - 3))(z)(z) = (0)$$

$$(z + (z + 3i) - (z - 3))(z)(z) = (0)$$

$$(z + (z + 3i) - (z - 3))(z)(z) = (0)$$

$$(z + (z + 3i) - (z - 3))(z)(z) = (0)$$

$$(z + (z + 3i) - (z - 3))(z)(z) = (0)$$

$$(z + (z + 3i) - (z - 3))(z)(z)(z) = (0)$$

$$(z + (z + 3) - (z - 3))(z)(z)(z)(z)(z) = (0)$$

Page 5 of 9 For more help visit our website www.exampaperspractice.co.uk

1.8.2 Applications of Matrices

Diagonalisation

What is matrix diagonalisation?

- A non-zero, square matrix is considered to be diagonal if all elements not along its leading diagonal are zero
- A matrix \boldsymbol{P} can be said to diagonalise matrix \boldsymbol{M} , if \boldsymbol{D} is a diagonal matrix where $\boldsymbol{D} = \boldsymbol{P}^{-1} \boldsymbol{M} \boldsymbol{P}$
- If matrix $m{M}$ has eigenvalues λ_1 , λ_2 and eigenvectors $m{x}_1$, $m{x}_2$ and is diagonisable by $m{P}$, then
 - $P = (x_1 x_2)$, where the first column is the eigenvector x_1 and the second column is the eigenvector x_2

$$\boldsymbol{D} = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$$

- You will only need to be able to diagonalise 2×2 matrices
- You will only need to consider matrices with real, distinct eigenvalues
 - If there is only one eigenvalue, the matrix is either already diagonalised or cannot be diagonalised
 - Diagonalisation of matrices with complex or imaginary eigenvalues is outside the scope of the course

😧 Exam Tip

Remember to use the formula booklet for the **determinant** and **inverse** of a matrix

Copyright © 2024 Exam Papers Practice

Worked example

The matrix
$$\boldsymbol{M} = \begin{pmatrix} 5 & 4 \\ 3 & 1 \end{pmatrix}$$
 has the eigenvalues $\lambda_1 = 7$ and $\lambda_2 = -1$ with eigenvectors $\boldsymbol{x}_1 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$ and $\boldsymbol{x}_2 = \begin{pmatrix} 2 \\ -3 \end{pmatrix}$ respectively.

Show that $\boldsymbol{P}_1 = (\boldsymbol{x}_1 \boldsymbol{x}_2)$ and $\boldsymbol{P}_2 = (\boldsymbol{x}_2 \boldsymbol{x}_1)$ both diagonalise \boldsymbol{M} .

Show that PIMP produces a diagonal matrix

Inverse of a 2×2 matrix
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \Rightarrow A^{-1} = \frac{1}{\det A} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}, ad \neq bc$$

 $P_1 = \begin{pmatrix} 2 & 2 \\ 1 & -3 \end{pmatrix} \Rightarrow P_1^{-1} = -\frac{1}{8} \begin{pmatrix} -3 & -2 \\ -1 & 2 \end{pmatrix} = \frac{1}{8} \begin{pmatrix} 3 & 2 \\ 1 & -2 \end{pmatrix}$
 $D_1 = P_1^{-1} \bowtie P_1 = \frac{1}{8} \begin{pmatrix} 3 & 2 \\ 1 & -2 \end{pmatrix} \begin{pmatrix} 5 & 4 \\ 3 & 1 \end{pmatrix} \begin{pmatrix} 2 & 2 \\ 1 & -3 \end{pmatrix}$
 $= \frac{1}{8} \begin{pmatrix} 3 & 2 \\ 1 & -2 \end{pmatrix} \begin{pmatrix} 14 & -2 \\ 7 & 3 \end{pmatrix}$
 $= \frac{1}{8} \begin{pmatrix} 56 & 0 \\ 0 & -8 \end{pmatrix}$
 $D = \begin{pmatrix} 7 & 0 \\ 0 & -1 \end{pmatrix}$
 $D = \begin{pmatrix} 7 & 0 \\ 0 & -1 \end{pmatrix}$
 $D = \begin{pmatrix} 7 & 0 \\ 0 & -1 \end{pmatrix}$

Copyright © 2024 Exam Papers Practice

$$P_{2} = \begin{pmatrix} 2 & 2 \\ -3 & 1 \end{pmatrix} \implies P_{2}^{-1} = \frac{1}{8} \begin{pmatrix} 1 & -2 \\ 3 & 2 \end{pmatrix}$$

$$D_{2} = P_{2}^{-1} M P_{2} = \frac{1}{8} \begin{pmatrix} 1 & -2 \\ 3 & 2 \end{pmatrix} \begin{pmatrix} 5 & 4 \\ 3 & 1 \end{pmatrix} \begin{pmatrix} 2 & 2 \\ -3 & 1 \end{pmatrix}$$

$$= \frac{1}{8} \begin{pmatrix} 1 & -2 \\ 3 & 2 \end{pmatrix} \begin{pmatrix} -2 & 14 \\ 3 & 7 \end{pmatrix}$$

$$= \frac{1}{8} \begin{pmatrix} -8 & 0 \\ 0 & 56 \end{pmatrix}$$

$$D = \begin{pmatrix} -1 & 0 \\ 0 & 7 \end{pmatrix} \implies D = Diagonal matrix of eigenvalues$$

Matrix Powers

One of the main applications of diagonalising a matrix is to make it easy to find **powers** of the matrix, which is useful when modelling transient situations such as the movement of populations between two towns.

How can the diagonalised matrix be used to find higher powers of the original matrix?

• The equation to find the diagonalised matrix can be re-arranged for ${m M}$:

$$D = P^{-1}MP \Rightarrow M = PDP^{-1}$$

• Finding higher powers of a matrix when it is diagonalised is straight forward:

$$\begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}^n = \begin{pmatrix} a^n & 0 \\ 0 & b^n \end{pmatrix}$$

• Therefore, we can easily find higher powers of the matrix using the **power formula** for a matrix found in the formula booklet:

$$M^n = P D^n P^{-1}$$

💽 Exam Tip

If you are asked to show this by hand, don't forget to use your GDC to check your answer afterwards!

Exam Papers Practice

b) Hence find M^5 .

Substitute
$$n = 5$$

$$M^{s} = -\frac{1}{3} \begin{pmatrix} (-(-1)^{s} - 2 (5)^{s}) & (-(-1)^{s} + (5)^{s}) \\ (-2(-1)^{s} + 2(5)^{s}) & (-2(-1)^{s} - (5)^{s}) \end{pmatrix}$$

$$= -\frac{1}{3} \begin{pmatrix} -6249 & 3126 \\ 6252 & -3123 \end{pmatrix}$$

$$M^{s} = \begin{pmatrix} 2083 & -1042 \\ -2084 & 1041 \end{pmatrix}$$