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1.8.1Intro to Complex Numbers

CartesianForm

Whatisanimaginarynumber?

= Upuntilnow,whenwe have encountered anequationsuchas x?2 = — 1 wewould have stated
that there are “no real solutions”
= Thesolutionsare X = t ./ —1 whichare notreal numbers

= To solve thisissue, mathematicians have defined oneofthesquarerootsofnegativeoneasi;an
imaginary number
= /-1 =1
- i2=-1

= Thesquareroots of othernegative numbers canbe found byrewritingthem as amultiple of
Vv 1
= using/ab =+/aXxX./b

Whatisacomplexnumber?

= Complexnumbers have both areal part and animaginary part
= Forexample:3 +41
= Therealpartis 3 and the imaginary partis 4
= Note thatthe imaginarypartdoes notinclude the T
= Complexnumbers are oftendenoted by Z
= Wereferto therealand imaginary parts respectivelyusing Re(Z)and Im(z)
= Two complexnumbers are equalif,and onlyif,both the real and imaginary parts are identical.
= Forexample,3 +21and 3 + 31 are notequal

= Thesetofallcomplexnumbersis giventhe symbol C
Whatis CartesianForm?

= There are anumberof different forms that complexnumbers canbe writtenin
= Theformz=a+biis knownas CartesianForm
= a,beR
= Thisis the first formgiveninthe formulabooklet
= Ingeneral,forz=a+bi
= Re(z)=za
= Im(z)=b
= Acomplexnumbercanbe easilyrepresented geometricallywhenitis in CartesianForm
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= Your GDC maycallthis rectangularform
= WhenyourGDC is setinrectangularsettings it will give answers in CartesianForm
= |fyourGDCisnotsetinacomplexmode itwillnot give anyoutputincomplexnumberform
= Make sure youcanfind the settings forusingcomplexnumbers in Cartesian Formand
practice inputting problems
= Cartesianformis the easiestformforadding and subtractingcomplex numbers

O Exam Tip

= Rememberthat complexnumbers have bothareal part and animaginary part
= lis purelyreal(its imaginary partis zero)
= jis purelyimaginary(its real partis zero)
= ]+iisacomplexnumber(boththe realand imaginaryparts are equalto 1)
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@ Worked example

a) Solve the equation X2 = — 9
x*= -9
x =29
Using lob =[ax[b = = = [T [T
x=13
b) Solve the equation(x + 7)2 —— 16,giving youranswers in Cartesianform.

(c+3)" = =16

x ++ =i_JTé)

x + =fJ|_6F

x+? = F4i Ku5m3%=ﬁx15

Rearro\nﬂe onswer ko Covtesion
form:

X = -7 t4i
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Complex Addition, Subtraction & Multiplication
Howdoladd and subtract complexnumbersin CartesianForm?

= Addingand subtractingcomplex numbers should be done whentheyare in Cartesianform
= Whenaddingand subtractingcomplexnumbers, simplify the real and imaginary parts separately
= Justlike youwould whencollectinglike terms inalgebraand surds,ordealingwith different
componentsinvectors

« (a+bi)+(c+di)=(a+c)+(b+d)i
« (a+bi)-(c+di)=(a=c)+(b-d)i

Howdo Imultiplycomplexnumbersin CartesianForm?

= Complexnumbers canbe multiplied byaconstantinthe same wayas algebraic expressions:
- k(a+ bi) =ka+ kbi
= Multiplying two complexnumbers in Cartesianformis done in the same way as multiplying two
linearexpressions:
« (a+bi)(c+di)=ac+(ad+ bc)i+ bdi2 = ac+(ad+ be)i — bd
= Thisisacomplexnumberwithreal part aC — bd and imaginary part ad+ bc
= The mostimportant thingwhen multiplying complexnumbers is that
- i2=-1
= Your GDC willbe able to multiply complexnumbers in Cartesianform
= Practise doingthis and useitto checkyouranswers
= |tiseasyto see that multiplying more thantwo complexnumbers togetherin Cartesianform
becomes alengthyprocess prone to errors

= |tis easierto multiplycomplexnumbers whentheyare indifferent forms and usuallyit makes
sense to convert them from Cartesianformto eitherPolarformorEuler’'s form first

= Sometimes whenaquestiondescribes multiple complexnumbers, the notation Zl’ Zz, e IS

used to represent each complex number

Howdo Ideal with higher powers of i?

= Becausei? = — 1 thiscanlead to some interestingresults forhigherpowers ofi
= P=2xi= —1i
. i4=(i2)2=(_1)2=1
- P=(i2)2 xi=i
C=(@P=(-1p= -1
= We canuse this same approach of usingi? to deal withmuch higherpowers
C D=2 xi=(-1)xi= —i
= Justrememberthat-Traised to anevenpoweris land raised to anodd poweris -1
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O Exam Tip

= Whenrevising foryourexams, practice usingyour GDC to check any calculations youdo with
complexnumbers byhand

= This willspeed upusingyour GDC inrectangularformwhilst also givingyoulots of
practice of carrying out calculations by hand

@ Worked example

a) Simplify the expression2(8 - 6i) - 5(3 + 4i).

Expond. the  brockets

z@t) —@y 16 - 120 - 15 -20¢
Collect the -reod. and imaﬂmo«ﬂ parts
6 =19 - 12t - 20¢

Simp\i@uc)

| - 32

b) Giventwo complexnumbers Z, =3 + 41 and Zz=6+7i,ﬁnd Z1 X z_.

1 2

EXPOLV\O\ the  brackets
/s~ . . N
(3+‘H)(6+7‘L) =8 +21u + 240 + 291
\4/

= I8 + 210 + 241 +(28)(-")
Usina |

Colleck the reol and imar\:]\'naﬂj Pour’rg

I8 +210 + 241 - 2% = 18-2% + (21 +24)Q
Simp\'\%

-l0+45¢
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Complex Conjugation & Division

When dividing complexnumbers, the complex conjugate is used to change the denominatorto a
realnumber.

Whatisacomplexconjugate?

» Foragivencomplexnumberz=a+ bi,the complexconjugate of Zisdenoted as Z*,Where
z'=a-bi
« fz=a—bithenz" =a+ bi
= Youwillfind that:
» z+7%0s always realbecause (a + bi) + (a - bi) =2a
= Forexample:(6+5i) + (6=5i) = 6+6+5i=5i = 12
» z—Z"0s always imaginarybecause (a + bi) - (a - bi) =2bi
- Forexample: (6 +51) — (6—5i) = 6=6+5i=(—5i) = 10i
» zX z"isalways realbecause (a + bi)(a - bi) = a2 + abi — abi — b2 = a2 + b? (as
2=-1
= Forexample: (6 +51)(6 = 5i) = 36 +30i — 30i —25i2 = 36 — 25(—1) = 61

Howdo ldivide complexnumbers?

= To divide two complexnumbers:
= STEP 1:Express the calculationinthe formofafraction
= STEP 2:Multiplythe top and bottomby the conjugate of the denominator:
a+bi a+ bi c—di
c+di | c+di . c—di
= This ensures we are multiplyingby1;so not affecting the overall value
= STEP 3:Multiplyout and simplifyyouranswer
= This should have arealnumberas the denominator
= STEP 4:Write youranswerin Cartesianformas two terms, simplifyingeach termif needed
= ORconvertinto therequired formif needed
= Your GDC willbe able to divide two complexnumbers in Cartesianform
= Practise doingthis and useitto checkyouranswers if youcan
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O ExamTip
= We canspeedupthe process forfinding zz* byusing the basic patternof
(x+a)(x—a)=x2-22

= We canapplythis to complexnumbers: (a + bi)(a - bi) =a2-b%i2=a2+b?
(using the fact that i2 = - 1)

= So 3 + 41 multiplied byits conjugate would be 32 + 42 =25

@ Worked example

Find the value of (1 + 7i) -+ (3 - i).

Rewrite as a fraction: 1 +Fi )
3 -1 complex conjugle
R— OF 3"L ;S 3 + L
MuLE'\p\b top ond bottom of the frockion b
the complex conjugoke of the denominator.

1+, 3+i. = (1+30(3+0)
3-1 3+1 (3-0)(3+1)
. =
R AR [k
9 +3( -3~
the imasina\rb ports
eliminoke each other
. 3+22 +(-3)
Q-0
10
Were in Cortesian = -4 4220
form 10 10
—% ¥ %L S'\mp\{(-‘ﬂ finol answer.
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1.8.2 Modulus & Argument

Modulus & Argument
Howdo Ifindthe modulus of acomplexnumber?

= The modulus of acomplexnumberisits distance fromthe originwhenplotted onanArgand
diagram

= The modulus of Zis written |Z|
= Ifz=X+iy,thenwe canuse Pythagoras to show..

- lzl=Vx*+y?

= Amodulusis never negative
What features shouldlknowabout the modulus of acomplexnumber?

= the modulusisrelated to the complexconjugate by...
« 22" =27"z=|z|?
= Thisis because zz" = (X + iy)(X - iy) = x2 +_y2
= + # +
Ingeneral, |Z1 22| |Z1 | |22|

= egbothz = 3+4iand z,=— 3 + 41 have amodulus of 5, but z, + z, simplifies to 8

whichhas amodulus of 8
Howdo I find the argument of acomplexnumber?

= The argument of acomplexnumberis the angle thatit makes onan Argand diagram
= The angle must be takenfromthe positive real axis
= The angle mustbeinacounter-clockwise direction
= Arguments are measured inradians
= Theycanbegivenexactinterms of Tt
The argument of Zis writtenarg zZ
Arguments canbe calculated usingright-angled trigonometry

= Thisinvolves usingthe tanratio plus asketchto decide whetheritis positive/negative and
acute/obtuse

What features shouldlknowabout theargument of acomplexnumber?

= Arguments are usuallygivenintherange =TT < arg z < T
= Negative arguments are forcomplexnumbers in the third and fourth quadrants

= Occasionallyyoucould be asked to give arguments in the range 0< arg z < 21
= The questionwillmakeitclearwhichrange to use

= Theargumentofzero,arg 0is undefined (no angle canbe drawn)
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What are therules formoduliand arguments under multiplication and division?

Whentwo complexnumbers, Z, and Z_,are multiplied to give Z. Z_,theirmoduliare also

1 2 172
multiplied
- lezl_ |Zl||Zzl
4
Whentwo complexnumbers, Z1 and Zz,are divided to give — ,theirmoduliare also divided
2
4L
12| |2

Whentwo complexnumbers, Z, and Z_,are multiplied to give Z

1 2 1
= arg (Z1 Zz) =arg z, targ z,

22 ,theirarguments are added

zZ
1

When two complexnumbers, Z1 and Zz,are divided to give ? ,theirarguments are subtracted
2

O ExamTip

= Always draw a quick sketchto helpyousee what quadrant the complexnumberliesinwhen
working out anargument
= Lookfortherange of values withinwhichyou should give yourargument
= Ifitis =7 < arg z < T thenyoumayneed to measureitinthe negative direction
s Ifitis 0 < arg z < 271 thenyouwill always measure inthe positive direction(counter -
clockwise)
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@ Worked example

a) Find the modulus and argumentofz=2+3i

lz| = Jz*+3* = |13
Drow o sketch to help find the orgument :

Im
-

2 - x 2+ 3i

The arqument. is T o =+N\-‘(%)
the counter- \ = = 0.9327%...
cdockwise ongle N l

token Lrom the 8 IZ ?>Re.

sitive xX-oxig
posit —

Modz = |zl = J13
arg z = O = 09382 (3sf)

b) Find the modulus and argumentof W= — 1 — 4/ 31

lwl = JEO + @) =4
Im

I€ twe cuaumevd; s
gy ( y > Re meDSW‘e.o\ dOCk\U\SQ

/ ars w 'Grom the posit'we

. /-B x-oxg then & will
Find tnis ! be neaoakive

angle first %3 ’

ond Suwokrock [z

from TC.

oL =+o~r\-‘($> =t (J3) = 1‘:3;
- _ 2
6=T-3 = &
Modz = || = 2
-6 =-2K

&fs Z
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1.8.3Introduction to Argand Diagrams

Argand Diagrams
Whatisthecomplexplane?

= The complexplane,sometimes also known as the Argand plane,is atwo-dimensional plane on
which complexnumbers canbe represented geometrically
= |tis similarto atwo-dimensional Cartesiancoordinate grid
= The x-axis is known as the real axis (Re)
= The y-axis is known as the imaginary axis (Im)
= The complexplane emphasises the factthat acomplexnumberis two dimensional
= j.eithastwo parts,arealandimaginary part
= Whereas arealnumberonlyhas one dimensionrepresented onanumberline (the x-axis only)

Whatisan Arganddiagram?

= AnArgand diagramis ageometricalrepresentationof complexnumbers onacomplex plane
= Acomplexnumbercanbe represented as eitherapointoravector
= The complexnumber x+)iis represented bythe point with cartesiancoordinate (x, )
= Therealpartisrepresented bythe point onthe real(x-)axis
= Theimaginary partis represented bythe point onthe imaginary (y-)axis
= Complexnumbers are oftenrepresented as vectors
= Aline segmentis drawnfromthe originto the cartesiancoordinate point
= Anarrowis added inthe directionawayfromthe origin
= This allows forgeometricalrepresentations of complexnumbers
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@ Worked example

a) Plotthe complexnumbers z =2 +2i and z =3 - 4ias points onanArgand diagram.
Lobe\ the. | ino«:) oxis Im
Im
N
2 2+2i

Lobel the yeal

L_/ oxis Re
Re

-4 34

You only need ko (el the \mporkonk PoivtS on the owxes.

b) Write down the complexnumbers represented bythe points Aand B onthe Argand

diagrambelow. Im
[}
V. 5 1
x A
-5 0 5 = Re
x B
--5

A 1+3i
B: =2 -1
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