铛
 EXAM PAPERS PRACTICE

Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme
Suitable for all boards
Designed to test your ability and thoroughly prepare you

1.7 Matrices

IB Maths - Revision Notes

1.7.1 Introduction to Matrices

Introduction to Matrices

Matrices are a useful wayto represent and manipulate data in orderto model situations. The elements in a matrix can represent data, equations or systems and have many real-life applications.

What arematrices?

- A matrix is a rectangular array of elements (numerical or algebraic) that are arranged in rows and columns
- The order of a matrix is defined by the number of rows and columns that it has
- The order of a matrix with m rows and n columns is $m \times n$
- A matrix \boldsymbol{A} can be defined by $\boldsymbol{A}=\left(\boldsymbol{a}_{i j}\right)$ where $i=1,2,3, \ldots, m$ and $j=1,2,3, \ldots, n$ and $a_{i j}$ refers to the element in row i, column j

What type of matrices are there?

- A column matrix (or column vector) is a matrix with a single column, $n=1$
- A row matrix is a matrix with a single row, $m=1$
- A square matrix is one in which the number of rows is equal to the number of columns, $m=n$
- Two matrices are equal when they are of the same order and their corresponding elements are equal, i.e. $a_{i j}=b_{i j}$ forall elements
-. A zero matrix, \boldsymbol{O}, is a matrix in which all the elements are 0 , e.g. $\boldsymbol{O}=\left(\begin{array}{cc}0 & 0 \\ 0 & 0\end{array}\right)$
- The identity matrix, \boldsymbol{I}, is a square matrix in which all elements along the leading diagonal are 1 and the rest are 0 , e.g. $\boldsymbol{I}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$

- Exam Tip

- Make sure that you know how to enter and store a matrix on yo ur GDC

Worked example

Let the matrix $\boldsymbol{A}=\left(\begin{array}{ccc}5 & -3 & 7 \\ -1 & 2 & 4\end{array}\right)$
a) Write down the order of \boldsymbol{A}.

$$
A \text { is a } 2 \times 3 \text { Matrix }
$$

b) State the value of $a_{2,3}$

$$
a_{23}=4
$$

1.7.2 Operations with Matrices

Matrix Addition \& Subtraction

Just as with ordinary numbers, matrices can be added to gether and subtracted from one another, provided that theymeet certain conditions.

Howis addition and subtraction performed with matrices?

- Two matrices of the same order can be added orsubtracted
- Only corresponding elements of the two matrices are added or subtracted
- $\boldsymbol{A} \pm \boldsymbol{B}=\left(a_{i j}\right) \pm\left(b_{i j}\right)=\left(a_{i j} \pm b_{i j}\right)$
- The result ant matrix is of the same order as the original matrices being added or subtracted What are the properties of matrixaddition and subtraction?
- $\boldsymbol{A}+\boldsymbol{B}=\boldsymbol{B}+\boldsymbol{A}$ (commutative)
- $\boldsymbol{A}+(\boldsymbol{B}+\boldsymbol{C})=(\boldsymbol{A}+\boldsymbol{B})+\boldsymbol{C}$ (associative)
- $A+O=A$
- $O-A=-A$
- $\boldsymbol{A}-\boldsymbol{B}=\boldsymbol{A}+(-\boldsymbol{B})$

- Exam Tip

- Make sure that you know how to add and subtract matrices on your GDC for speed orfor checking work in an exam!

Worked example

Considerthe matrices $\boldsymbol{A}=\left(\begin{array}{cc}-4 & 2 \\ 7 & 3 \\ 1 & -5\end{array}\right), \boldsymbol{B}=\left(\begin{array}{cc}2 & 6 \\ 5 & -9 \\ -2 & -3\end{array}\right)$
a) Find $\boldsymbol{A}+\boldsymbol{B}$

$$
A+B=\left(\begin{array}{cc}
-4 & 2 \\
7 & 3 \\
1 & -5
\end{array}\right)+\left(\begin{array}{cc}
2 & 6 \\
5 & -9 \\
-2 & -3
\end{array}\right)=\left(\begin{array}{cc}
-2 & 8 \\
12 & -6 \\
-1 & -8
\end{array}\right)
$$

b) Find $\boldsymbol{A}-\boldsymbol{B}$.

$$
A-B=\left(\begin{array}{rr}
-4 & 2 \\
7 & 3 \\
1 & -5
\end{array}\right)-\left(\begin{array}{cc}
2 & 6 \\
5 & -9 \\
-2 & -3
\end{array}\right)=\left(\begin{array}{rr}
-6 & -4 \\
2 & 12 \\
3 & -2
\end{array}\right)
$$

ExamPapers Practice
Copyright
© 2024 Exam Papers Practice

Matrix Multiplication

Exam Papers Practice

Matrices can also be multiplied either by a scalar or by ano ther matrix.

How do Imultiply a matrix by a scalar?

- Multiply eachelement in the matrix by the scalar value
- $k \boldsymbol{A}=\left(k a_{i j}\right)$
- The resultant matrix is of the same order as the original matrix
- Multiplication by a negative scalar changes the sign of each element in the matrix

How do Imultiply a matrix by ano ther matrix?

- To multiply a matrix by another matrix, the number of columns in the first matrix must be equal to the number of rows in the second matrix
- If the order of the first matrix is $m \times n$ and the order of the second matrix is $n \times p$, then the order of the result ant matrix will be $m \times p$
- The product of two matrices is found by multiplying the corresponding elements in the row of the first matrix with the corres ponding elements in the column of the second matrix and finding the sum to place in the resultant matrix
- E.g. If $\boldsymbol{A}=\left[\begin{array}{lll}a & b & c \\ d & e & f\end{array}\right], \boldsymbol{B}=\left[\begin{array}{ll}g & h \\ i & j \\ k & 1\end{array}\right]$
- then $\boldsymbol{A} \boldsymbol{B}=\left[\begin{array}{ll}(a g+b i+c k) & (a h+b j+c l) \\ (d g+e i+f k) & (d h+e j+f l)\end{array}\right]$
- then $\boldsymbol{B} \boldsymbol{A}=\left[\begin{array}{ccc}(g a+h d) & (g b+h e) & (g c+h f) \\ (i a+j d) & (i b+j e) & (i c+j f) \\ (k a+l d) & (k b+l e) & (k c+1 f)\end{array}\right]$

Howdo Isquare an expression involving matrices?

- If an expression involving matrices is squared then you are multiplying the expression by itself, so write it out in bracket form first, e.g. $(A+B)^{2}=(A+B)(A+B)$
- remember, the regular rules of algebra do not apply here and you cannot expand these brackets, instead, add together the matrices inside the brackets and then multiply the matrices together

What are the properties of matrix multiplication?

- $\boldsymbol{A} \boldsymbol{B} \neq \boldsymbol{B} \boldsymbol{A}$ (non-commutative)
- $A(B C)=(A B) C$ (associative)
- $\boldsymbol{A}(\boldsymbol{B}+\boldsymbol{C})=\boldsymbol{A B}+\boldsymbol{A C}$ (distributive)
- $(\boldsymbol{A}+\boldsymbol{B}) \boldsymbol{C}=\boldsymbol{A C}+\boldsymbol{B C}$ (distributive)
- $\boldsymbol{A I}=\boldsymbol{I A}=\boldsymbol{A}$ (identitylaw)
- $\boldsymbol{A O}=\boldsymbol{O} \boldsymbol{A}=\boldsymbol{O}$, where \boldsymbol{O} is azero matrix
- Powers of square matrices: $\boldsymbol{A}^{2}=\boldsymbol{A} \boldsymbol{A}, \boldsymbol{A}^{3}=\boldsymbol{A} \boldsymbol{A} \boldsymbol{A}$ etc.

© Exam Tip

- Make sure that you are clear on the properties of matrix algebra and show each step of your calculations

Worked example

Consider the matrices $\boldsymbol{A}=\left[\begin{array}{ccc}4 & 2 & -5 \\ -3 & 8 & 1 \\ -1 & -2 & 2\end{array}\right]$ and $\boldsymbol{B}=\left[\begin{array}{cc}5 & 1 \\ -2 & 5 \\ 9 & 7\end{array}\right]$
a) Find $\boldsymbol{A} \boldsymbol{B}$.

$$
\begin{aligned}
A B & =\left(\begin{array}{ccc}
4 & 2 & -5 \\
-3 & 8 & 1 \\
-1 & -2 & 2
\end{array}\right) \times\left(\begin{array}{cc}
5 & 1 \\
-2 & 5 \\
9 & 7
\end{array}\right) \\
& =\left(\begin{array}{cc}
(4 \times 5+2 \times-2+-5 \times 9) & (4 \times 1+2 \times 5+-5 \times 7) \\
(-3 \times 5+8 \times-2+1 \times 9) & (-3 \times 1+8 \times 5+1 \times 7) \\
(-1 \times 5+-2 \times-2+2 \times 9) & (-1 \times 1+-2 \times 5+2 \times 7)
\end{array}\right) \\
& =\left(\begin{array}{cc}
(20-4-45) & (4+10-35) \\
(-15-16+9) & (-3+40+7) \\
(-5+4+18) & (-1-10+14)
\end{array}\right) \\
A B & =\left(\begin{array}{cc}
-29 & -21 \\
-22 & 44 \\
17 & 3
\end{array}\right)
\end{aligned}
$$

b) Explain why you cannot find $\boldsymbol{B} \boldsymbol{A}$.

BA cannot be found because the number of columns in B is different to the number of rows in A
c) Find \boldsymbol{A}^{2}

© 2024 Exam Papers Practice

$$
\begin{aligned}
A^{2} & =\left(\begin{array}{ccc}
4 & 2 & -5 \\
-3 & 8 & 1 \\
-1 & -2 & 2
\end{array}\right)^{2}=\left(\begin{array}{ccc}
4 & 2 & -5 \\
-3 & 8 & 1 \\
-1 & -2 & 2
\end{array}\right)\left(\begin{array}{ccc}
4 & 2 & -5 \\
-3 & 8 & 1 \\
-1 & -2 & 2
\end{array}\right) \\
& =\left(\begin{array}{ccc}
(4 \times 4+2 \times-3+-5 \times-1) & (4 \times 2+2 \times 8+-5 x-2) & (4 \times-5+2 \times 1+-5 \times 2) \\
(-34 \times 4+8 \times-3+1 \times-1) & (-3 \times 2+8 \times 8+1 \times-2) & (-3 x-5+8 \times 1+1 \times 2) \\
(-1 \times 4+-2 \times-3+2 \times-1) & (-1 \times 2+-2 \times 8+2 \times-2) & (-1 \times-5+-2 \times 1+2 \times 2)
\end{array}\right) \\
A^{2} & =\left(\begin{array}{ccc}
15 & 34 & -28 \\
-37 & 56 & 25 \\
0 & -22 & 7
\end{array}\right)
\end{aligned}
$$

1.7.3 Determinants \& Inverses

Determinants

What is a determinant?

- The determinant is a numerical value (positive or negative) calculated from the elements in a matrix and is used to find the inverse of a matrix
- You can only find the determinant of a square matrix
- The method forfinding the determinant of a 2×2 matrix is given in your formula booklet:

$$
\boldsymbol{A}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \Rightarrow \operatorname{det} \boldsymbol{A}=|\boldsymbol{A}|=a d-b c
$$

- You only need to be able to find the determinant of a 2×2 matrix by hand
- For larger $n \times n$ matrices you are expected to use your GDC
- The determinant of an identity matrix is $\operatorname{det}(\boldsymbol{I})=1$
- The determinant of a zero matrix is $\operatorname{det}(\boldsymbol{O})=0$
- When finding the determinant of a multiple of a matrix or the product of two matrices:
- $\operatorname{det}(k \boldsymbol{A})=k^{2} \operatorname{det}(\boldsymbol{A})_{\text {(fora }} 2 \times 2$ matrix)
- $\operatorname{det}(\boldsymbol{A B})=\operatorname{det}(\boldsymbol{A}) \times \operatorname{det}(\boldsymbol{B})$

Worked example

Considerthe matrix $\boldsymbol{A}=\left(\begin{array}{cc}3 & -6 \\ p & 7\end{array}\right)$, where $p \in \mathbb{R}$ is a constant.
a) Given that $\operatorname{det} \boldsymbol{A}=-3$, find the value of p.

```
l Determinant of a 2\times2 ( A=( lla
```

$\operatorname{det} A=3 \times 7--6 \times p=21+6 p$
So, $-3=21+6 p$
$-24=6 p$

$$
p=-4
$$

b) Find the determinant of $4 \boldsymbol{A}$.

$$
\operatorname{det}(4 \mathrm{~A})=4^{2} x-3=-48
$$

Inverse Matrices

Howdolfind the inverse of a matrix?

- The determinant can be used to find out if a matrix is invertible or not:
- If $\operatorname{det} \boldsymbol{A} \neq 0$, then \boldsymbol{A} is invertible
- If $\operatorname{det} \boldsymbol{A}=0$, then \boldsymbol{A} is singular and does not have an inverse
- The method for finding the inverse of a 2×2 matrix is given in your formula booklet:

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \Rightarrow A^{-1}=\frac{1}{\operatorname{det} A}\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right), a d \neq b c
$$

- You only need to be able to find the inverse of a 2×2 matrix by hand
- Forlarger $n \times n$ matrices you are expected to use your GDC
- The inverse of a square matrix \boldsymbol{A} is the matrix \boldsymbol{A}^{-1} such that the product of these matrices is an identity matrix, $\boldsymbol{A} \boldsymbol{A}^{-1}=\boldsymbol{A}^{-1} \boldsymbol{A}=\boldsymbol{I}$
- As a result of this property:
- $\boldsymbol{A} \boldsymbol{B}=\boldsymbol{C} \Rightarrow \boldsymbol{B}=\boldsymbol{A}^{-1} \boldsymbol{C}$ (pre-multiplying by \boldsymbol{A}^{-1})
- $\boldsymbol{B} \boldsymbol{A}=\boldsymbol{C} \Rightarrow \boldsymbol{B}=\boldsymbol{C A}^{-1}$ (post-multiplying by \boldsymbol{A}^{-1})

Worked example

Considerthe matrices $\boldsymbol{P}=\left(\begin{array}{cc}4 & -2 \\ 8 & 2\end{array}\right), \boldsymbol{Q}=\left(\begin{array}{cc}k & 6 \\ -5 & 3\end{array}\right)$ and $\boldsymbol{R}=\left(\begin{array}{cc}18 & 18 \\ 6 & 54\end{array}\right)$, where \boldsymbol{k} is a constant.
a) Find \boldsymbol{P}^{-1}.

$\begin{array}{l}\text { Determinant of a } 2 \times 2 \\ \text { matrix }\end{array}$	$\boldsymbol{A}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \Rightarrow \operatorname{det} \boldsymbol{A}=\|\boldsymbol{A}\|=a d-b c$

Inverse of a 2×2 matrix	$A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \Rightarrow \boldsymbol{A}^{-1}=\frac{1}{\operatorname{det} \boldsymbol{A}}\left(\begin{array}{rr}d & -b \\ -c & a\end{array}\right), a d \neq b c$, 10

$p^{-1}=\frac{1}{4 \times 2-(-2) \times 8}\left(\begin{array}{cc}2 & 2 \\ -8 & 4\end{array}\right)$
$=\frac{1}{24}\left(\begin{array}{cc}2 & 2 \\ -8 & 4\end{array}\right)$

$$
P^{-1}=\left(\begin{array}{cc}
\frac{1}{12} & \frac{1}{12} \\
-\frac{1}{3} & \frac{1}{6}
\end{array}\right)
$$

b) Given that $\boldsymbol{P} \boldsymbol{Q}=\boldsymbol{R}$ find the value of \boldsymbol{k}.

$$
P Q=R \Rightarrow Q=P^{-1} R
$$

$$
\begin{aligned}
\left(\begin{array}{cc}
k & 6 \\
-5 & 3
\end{array}\right) & =\left(\begin{array}{cc}
\frac{1}{12} & \frac{1}{12} \\
-\frac{1}{3} & \frac{1}{6}
\end{array}\right)\left(\begin{array}{cc}
18 & 18 \\
6 & 54
\end{array}\right) \\
\left(\begin{array}{cc}
k & 6 \\
-5 & 3
\end{array}\right) & =\left(\begin{array}{cc}
\left(\frac{1}{12} \times 18+\frac{1}{12} \times 6\right) & \left(\frac{1}{12} \times 18+\frac{1}{12} \times 54\right) \\
\left(-\frac{1}{3} \times 18+\frac{1}{6} \times 6\right) & \left(-\frac{1}{3} \times 18+\frac{1}{6} \times 54\right)
\end{array}\right) \\
\left(\begin{array}{cc}
k & 6 \\
-5 & 3
\end{array}\right) & =\left(\begin{array}{cc}
2 & 6 \\
-5 & 3
\end{array}\right) \\
k & =2
\end{aligned}
$$

1.7.4 Solving Systems of Linear Equations with Matrices

Solving Systems of Linear Equations with Matrices

Matrices are used in a huge variety of applic ations within engineering, computing and business. They are particularly useful for encrypting data and forecasting from given data. Using matrices allows for much larger and more complex systems of linear equations to be solved easily.

How do you set up a system of linear equations using matrices?

- Alinear equation can be written in the form $\boldsymbol{A} \boldsymbol{X}=\boldsymbol{b}$, where \boldsymbol{A} is a matrix
- Note that for a system of linear equations to have a unique solution, the matrix must be invertible and therefore must be a square matrix
- In exams, only invertible matrices will be given (except when solving for eigenvectors)
- You should be able to use matrices to solve a system of up to two linear equations both with and without your GDC
- You should be able to use a mixture of matrices and technology to solve a system of up to three linear equations
How do you solve a system of linear equations with matrices?
- STEP 1

Write the information in a matrix equation, e.g. for a system of three linear equations $\boldsymbol{A}\left(\begin{array}{c}x \\ \boldsymbol{y} \\ Z\end{array}\right)=\boldsymbol{B}$,
where the entries into matrix \boldsymbol{A} are the coefficients of $\boldsymbol{X}, \boldsymbol{Y}$ and Z and matrix \boldsymbol{B} is a column matrix

- STEP 2

Copyright
Exam Papers Practice Re-write the equation using the inverse of $\boldsymbol{A},\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\boldsymbol{A}^{-1} \boldsymbol{B}$

- STEP 3

Evaluate the right-hand side to find the values of the unknown variables $\boldsymbol{X}, \boldsymbol{Y}$ and \boldsymbol{Z}

- Exam Tip

- If you are asked to solve a system of linear equations by hand you can check your work afterwards by solving the same question on yo ur GDC

Worked example

a) Write the system of equations

$$
\left\{\begin{array}{c}
x+3 y-z=-3 \\
2 x+2 y+z=2 \\
3 x-y+2 z=1
\end{array}\right.
$$

in matrix form.

$$
\left(\begin{array}{rrr}
1 & 3 & -1 \\
2 & 2 & 1 \\
3 & -1 & 2
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
-3 \\
2 \\
1
\end{array}\right)
$$

b) Hence solve the simultaneous linear equations.
Re-write the equation in part a) using the inverse matrix

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{rrr}
\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\
-\frac{1}{10} & \frac{1}{2} & -\frac{3}{10} \\
-\frac{4}{5} & 1 & -\frac{2}{5}
\end{array}\right)\left(\begin{array}{r}
-3 \\
2 \\
1
\end{array}\right)
$$

Use your $G D C$ to find A^{-1}

$$
\begin{aligned}
& x=-2 \\
& y=1 \\
& z=4
\end{aligned}
$$

