铛
 EXAM PAPERS PRACTICE

Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme
Suitable for all boards
Designed to test your ability and thoroughly prepare you

1.6 Binomial Theorem

1.6.1 Binomial Theorem

Binomial Theorem

What is the Binomial Theorem?

- The binomial theorem (sometimes known as the bino mial expansion) gives a method for expanding a two-term expression in a bracket raised to a power
- Abinomial expression is in fact any two terms inside the bracket, ho wever in IB the expression will usually be linear
- To expand abracket with a two-term expressionin:
- First choose the most appropriate parts of the expression to assign to a and b
- Then use the formula for the bino mial theorem:

$$
(a+b)^{n}=a^{n}+{ }^{n} C_{1} a^{n-1} b+\ldots+{ }^{n} C_{r} a^{n-r} b^{r}+\ldots+b^{n}
$$

- where ${ }^{n} \mathrm{C}_{r}=\frac{n!}{r!(n-r)!}$

- See below formore information on ${ }^{n} \mathrm{C}_{r}$
- Youmayalso see ${ }^{n} \mathrm{C}_{r}$ written as $\binom{n}{r}$ or ${ }_{n} \mathrm{C}_{r}$
- You will usually be asked to find the first three or four terms of an expansion
- Look out for whether you should give your answer in ascending ordescending powers of x
- For ascending powers start with the constant term, a^{n}

Copyrig. Fordescending powers start with the term with x in
© 2024 Exa. Youmaywish to swap a and bover so that you can follow the general formula given in the formula book

- If you are not writing the full expansion you can either
- show that the sequence continues by putting an ellipsis (...) afteryourfinal term
- or show that the terms you have found are an approximation of the full sequence by using the sign for approximately equals to (\approx)

Howdo Ifind the coefficient of a single term?

- Most of the time you will be asked to find the coefficient of a term, rather than carry out the whole expansion
- Use the formula for the general term
- The question will give you the power of x of the term you are looking for
- Use this to choose which value of r you will need to use in the formula
- This will depend on where the x is in the bracket
- The laws of indices can help you decide which value of r to use:
- For $(a+b x)^{n}$ to find the coefficient of X^{r} use $a^{n-r}(b x)^{r}$
- For $\left(a+b X^{2}\right)^{n}$ to find the coefficient of X^{r} use $a^{\frac{n-r}{2}}\left(b x^{2}\right)^{\frac{r}{2}}$
- For $\left(a+\frac{b}{x}\right)^{n}$ look at how the powers will cancel out to decide which value of r to use
- So for $\left(3 x+\frac{2}{X}\right)^{8}$ to find the co efficient of X^{2} use the term with $r=3$ and to find the constant termuse the term with $r=4$
- There are a lot of variations of this so it is usually easierto see this by inspection of the exponents
- You may also be given the coefficient of a particular term and asked to find an unknown in the brackets
- Use the laws of indices to choose the correct term and then use the binomial theorem formula to form and solve and equation

(-) Exam Tip

- Bino mial expansion questions canget messy, use separate lines to keep your working clear and always put terms in brackets

Worked example

Find the first three terms, in as cending powers of X, in the expansion of $(3-2 x)^{5}$.
o 2024 Exam Papers Practice

$$
a=3 \quad b=-2 x \quad n=5
$$

Substitute values into the formula for $(a+b)^{n}$
$(a+b)^{n}=a^{n}+{ }^{n} c_{1} a^{n-1} b+\ldots+{ }^{n} c_{r} a^{n-r} b^{r}+\ldots+b^{n}$
Question asks for ascending powers of x, so start with the constant term, a^{n}.

$$
\begin{aligned}
& \qquad(3-2 x)^{5}=3^{5}+5 c_{1}(3)^{5-1}(-2 x)+5 c_{2}(3)^{5-2}(-2 x)^{2}+\ldots \\
& \begin{array}{l}
\text { Watch out } \\
\text { for the } \\
\text { negative }
\end{array} \\
& \approx 243+5 \times 81 \times-2 x+10 \times 27 \times 4 x^{2} \\
& \\
& \qquad 243-810 x+1080 x^{2} \\
& (3-2 x)^{5} \approx 243-810 x+1080 x^{2}
\end{aligned}
$$

Page 2 of 10
For more help visit our website www.exampaperspractice.co.uk

The Binomial Coefficient nCr

What is ${ }^{n} C_{r}$?

- If we want to find the number of ways to choose ritems out of ndifferent objects we can use the formula for ${ }^{n} C_{r}$
- The formula for r combinations of n items is ${ }^{n} \mathrm{C}_{r}=\frac{n!}{r!(n-r)!}$
- This formula is given in the formula bo oklet along with the formula for the bino mial theorem
- The function ${ }^{n} \mathrm{C}_{r}$ canbe written $\binom{n}{r}$ or ${ }_{\mathrm{n}} \mathrm{C}_{r}$ and is often read as 'nchooser'
- Make sure you can find and use the button on yo ur GDC

How does ${ }^{n} C_{r}$ relateto the binomial theorem?

- The formula ${ }^{n} \mathrm{C}_{r}=\frac{n!}{r!(n-r)!}$ is also known as a binomial coefficient
- For a binomial expansion $(a+b)^{n}$ the coefficients of eachterm will be ${ }^{n} \mathrm{C}_{0},{ }^{n} \mathrm{C}_{1}$ and so on up to ${ }^{n} \mathrm{C}_{n}$
- The coefficient of the $r^{t h}$ term will be ${ }^{n} \mathrm{C}_{r}$
- ${ }^{n} C_{n}={ }^{n} C_{0}=1$
-24 The binomial coefficients are symmetrical, so ${ }^{n} \mathrm{C}_{r}={ }^{n} \mathrm{C}_{n-r}$
- This can be seen byconsidering the formula for ${ }^{n} \mathrm{C}_{r}$
- ${ }^{n} \mathrm{C}_{n-r}=\frac{n!}{(n-r)!(n-(n-r))!}=\frac{n!}{r!(n-r)!}=n \mathrm{C}_{r}$

O Exam Tip

- You will most likely need to use the formula fornCr at some point in your exam
- Practice using it and don't always rely onyour GDC
- Make sure you can find it easily in the formula booklet

Exam Papers Practice

Worked example

Without using a calculator, find the coefficient of the term in X^{3} in the expansion of $(1+x)^{9}$.

$$
n=9, \quad a=1, \quad b=x
$$

Substitute values into the formula for the binomial theorem:
$(a+b)^{n}=a^{n}+\ldots+{ }^{n} C_{r} a^{n-r} b^{r}+\ldots+b^{n}$
where ${ }^{n^{n} C_{r}}=\frac{n!}{r!(n-r)!}$

$r=3$ gives $9 c_{3} \times(1)^{9-3}(x)^{3}$
Non-calculator, so work out ${ }^{n} C_{r}$ separately

$$
\begin{aligned}
q_{C_{3}}=\frac{9!}{3!(9-3)!} & =\frac{9 \times 8 \times 7 \times 66 \times 8 \times 4}{(3 \times 2)(6 \times 8 \times 44} \\
& =\frac{9 \times 8 \times 7}{6}=84
\end{aligned}
$$

so the term when $r=3$ is $84 \times(1)^{6} \times x^{3}$

$$
=84 x^{3}
$$

© 2024 Exam Papers Prac
Coefficient of $x^{3}=84$

Pascal's Triangle

What is Pascal's Triangle?

- Pascal's triangle is a way of arranging the binomial coefficients and neatlyshows how they are formed
- Each term is formed by ad ding the two terms above it
- The first row has just the number 1
- Each row begins and ends with a number 1
- From the third row the terms in between the 1s are the sum of the two terms above it

PASCAL'S TRIANGLE

Copyright

How does Pascal's Triangle relate to the binomial theorem?

- Pascal's triangle is an alternative way of finding the bino mial coefficients, ${ }^{n} \mathrm{C}_{r}$
- It can be useful forfinding for smallervalues of \boldsymbol{n} without a calculator
- Howeverforlargervalues of $\boldsymbol{\eta}$ it is slow and prone to arithmetic errors
- Taking the first row as zero, $\left({ }^{0} \mathrm{C}_{0}=1\right)$, each row corresponds to the $n{ }^{\text {th }}$ row and the term within that row corresponds to the $r^{\text {th }}$ term

(-) Exam Tip

- In the non-calculator exam Pascal's triangle can be helpful if you need to get the coefficients of an expansion quickly, provided the value of n is not to o big

Exam Papers Practice

Worked example

Write out the $7^{\text {th }}$ row of Pascal's triangle and use it to find the value of ${ }^{6} \mathrm{C}_{4}$.

$$
7^{\text {th }} \text { row of Pascals Triangle: }
$$

1.6.2 Extension of The Binomial Theorem

Binomial Theorem: Fractional \& Negative Indices

Howdo luse the binomial theorem for fractional and negative indices?

- The formula given in the formula bo oklet for the binomial theorem applies to positive integers only
- $(a+b)^{n}=a^{n}+{ }^{n} \mathrm{C}_{1} a^{n-1} b+\ldots+{ }^{n} \mathrm{C}_{r} a^{n-r} b^{r}+\ldots+b^{n}$
- where ${ }^{n} \mathrm{C}_{r}=\frac{n!}{r!(n-r)!}$
- Fornegative orfractional powers the expression in the brackets must first be changed such that the value for a is 1
- $(a+b)^{n}=a^{n}\left(1+\frac{b}{a}\right)^{n}$
- $(a+b)^{n}=a^{n}\left(1+n\left(\frac{b}{a}\right)+\frac{n(n-1)}{2!}\left(\frac{b}{a}\right)^{2}+\ldots\right), n \in \mathbb{Q}$
- This is given in the formula booklet
- If $a=1$ and $b=x$ the bino mial theo rem is simplified to
$.(1+x)^{n}=1+n x+\frac{n(n-1)}{2!} x^{2}+\frac{n(n-1)(n-2)}{3!} x^{3}+\ldots, n \in \mathbb{Q}, \quad|x|<1$
- This is not in the formula bo oklet, you must remember it or be able to derive it from the formula given
- Youneed to be able to reco gnise a negative orfractio nal power
- The expression maybe on the denominator of a fraction
- $\frac{1 \text { Practice }}{(a+b)^{n}}=(a+b)^{-n}$
- Orwritten as a surd
- $\sqrt[n]{(a+b)^{m}}=(a+b)^{\frac{m}{n}}$
- For $n \notin \mathbb{N}$ the expansion is infinitelylong
- You will usually be asked to find the first three terms
- The expansion is only valid for $|X|<1$
- This means $-1<x<1$
- This is known as the interval of convergence
- For an expansion $(a+b x)^{n}$ the interval of convergence would be $-\frac{a}{b}<x<\frac{a}{b}$

How do we use the binomial theorem to estimate a value?

- The bino mial expansion can be used to form an approximation for a value raised to a power
- Since $|x|<1$ higherpowers of x will be verysmall
- Usually only the first three or fo ur terms are needed to form an approximation
- The more terms used the closer the approximation is to the true value
- The following steps may help you use the bino mial expansion to approximate a value
- STEP 1: Compare the value you are approximating to the expression being expanded
- e.g. $(1-x)^{\frac{1}{2}}=0.96^{\frac{1}{2}}$
- STEP 2: Find the value of x by solving the appropriate equation
- e.g. $1-x=0.96$

$$
x=0.04
$$

- STEP 3: Substitute this value of x into the expansion to find the approximation
- e.g. $1-\frac{1}{2}(0.04)-\frac{1}{8}(0.04)^{2}=0.9798$
- Check that the value of x is within the interval of convergence for the expression
- If x is outside the interval of convergence then the approximation may not be valid

- Exam Tip

- Students often struggle with the extension of the binomial theorem questions in the exam, Copyright howeverthe formula is given in the formula booklet
© 2024 Exa Make sure youc an lo cate the formula easily and practice substituting values in
- Mistakes are often made with negative numbers orbyforgetting to use brackets properly
- Writing one term perline can help with both of these

Worked example
1
Consider the binomial expansion of $\frac{1}{\sqrt{9-3 x}}$.
a) Write down the first three terms.

Rewrite $\frac{1}{\sqrt{9-3 x}}$ in the form $k\left(1+\frac{x}{a}\right)^{n}$

$$
\begin{aligned}
\frac{1}{\sqrt{9-3 x}}=(9-3 x)^{-\frac{1}{2}} & =9^{-\frac{1}{2}}\left(1-\frac{3 x}{9}\right)^{-\frac{1}{2}} \\
& =\frac{1}{3}\left(1-\frac{x}{3}\right)^{-\frac{1}{2}}
\end{aligned}
$$

Substitute values into the formula for $(1+x)^{n}$

$$
\begin{aligned}
& \frac{1}{3}\left(1-\frac{x}{3}\right)^{-\frac{1}{2}}=\frac{1}{3}\left[1+\left(-\frac{1}{2}\right)\left(-\frac{x}{3}\right)+\frac{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)}{2!}\left(-\frac{x}{3}\right)^{2}+\ldots\right] \\
&=\frac{1}{3}\left[1+\frac{x}{6}+\frac{x^{2}}{24}+\ldots\right] \\
&=\frac{1}{3}+\frac{x}{18}+\frac{x^{2}}{72}+\ldots \\
& \frac{1}{\sqrt{9-3 x}} \approx \frac{1}{3}+\frac{x}{18}+\frac{x^{2}}{72}
\end{aligned}
$$

b) State the interval of convergence for the complete expansion.
© 2024 Exam Paperspragice and $n \notin \mathbb{N}$, so the Series converges when $|x|<1$

$$
\begin{aligned}
& \frac{1}{3}\left(1-\frac{x}{3}\right)^{-\frac{1}{2}} \\
& \left|-\frac{x}{3}\right|<1 \\
& |x|<3 \Rightarrow-3<x<3
\end{aligned}
$$

$$
\text { Converges for }-3<x<3
$$

Exam Papers Practice

c) Use the terms found in part (a) to estimate $\frac{1}{\sqrt{10}}$. Give your answer as a fraction.

Find the value of x for which $\frac{1}{\sqrt{9-3 x}}=\frac{1}{\sqrt{10}}$

$$
\begin{aligned}
9-3 x & =10 \\
x & =-\frac{1}{3}
\end{aligned} \quad \begin{aligned}
-3<x<3 \text { so can } \\
\text { use the expansion }
\end{aligned}
$$

Substitute $x=-\frac{1}{3}$ into the expansion for $\frac{1}{\sqrt{9-3 x}}$
$\frac{1}{\sqrt{9-3\left(-\frac{1}{3}\right)}} \approx \frac{1}{3}+\frac{\left(-\frac{1}{3}\right)}{18}+\frac{\left(-\frac{1}{3}\right)^{2}}{72}$

Exam Papers Practice
© 2024 Exam Papers Practice

