Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme
Suitable for all boards
Designed to test your ability and thoroughly prepare you

1.5 Further Proof \& Reasoning

1.5.1 Proof by Induction

Proof by Induction

What is proof byinduction?

- Proof by induction is a way of proving a result is true for a set of int egers byshowing that if it is true for one integer then it is true for the next integer
- It can be thought of as dominoes:
- All do minoes will fall down if:
- The first domino falls down
- Each domino falling do wn causes the next domino to fall down

What are the steps for proof byinduction?

- STEP 1:The basic step
- Show the result is true for the base case
- This is normally $n=1$ or 0 but it could be anyinteger
- For example: To prove $\sum_{r=1}^{n} r^{2}=\frac{1}{6} n(n+1)(2 n+1)$ is true for all integers $n \geq 1$ you would first need to show it is true for $n=1$:
- $\sum_{r=1}^{1} r^{2}=\frac{1}{6}(1)((1)+1)(2(1)+1)$
- STEP 2: The assumptionstep
- Assume the result is true for $\boldsymbol{n}=\boldsymbol{k}$ for some integer k
- For example: Assume $\sum_{r=1}^{k} r^{2}=\frac{1}{6} k(k+1)(2 k+1)$ is true
- There is nothing to do forthis step apart from writing down the assumption
- STEP 3: The inductive step
- Using the assumption show the result is true for $\boldsymbol{n}=\boldsymbol{k + 1}$
- It can be helpful to simplify LHS \& RHS separately and show they are id entical
- The assumption from STEP 2 will be needed at some point
- For example: $L H S=\sum_{r=1}^{k+1} r^{2}$ and $R H S=\frac{1}{6}(k+1)((k+1)+1)(2(k+1)+1)$
- STEP 4:The conclusionstep
- State the result is true
- Explainin words whythe result is true
- It must include:
- If true for $n=k$ then it is true for $n=k+1$
- Since true for $n=1$ the statement is true for all $n \in \mathbb{Z}, n \geq 1$ by mathematical induction
- The sentence will be the same foreach proof just change the base case from $n=1$ if necessary

What type of statements might Ibe asked to prove byinduction?

- Sums of sequences
- If the terms involve factorials then $(k+1)!=(k+1) \times(k!)$ is useful
- These can be written in the form $\sum_{r=1}^{n} f(r)=g(n)$
- A useful trick for the inductive step is using $\sum_{r=1}^{k+1} f(r)=f(k+1)+\sum_{r=1}^{k} f(r)$
- Divisibility of an expression byan integer
- These can be written in the form $f(n)=m \times q_{n}$ where $m \& q_{n}$ are integers
- A useful trick for the inductive step is using $a^{k+1}=a \times a^{k}$
- Complex numbers
- You can use proof byinduction to prove de Moivre's theorem
- Derivatives
- Such as chain rule, product rule \& quotient rule
- These can be written in the form $f^{(n)}(x)=g(x)$
- A useful trick for the inductive step is using $f^{(k+1)}(x)=\frac{\mathrm{d}}{\mathrm{d} X}\left(f^{(k)}(x)\right)$
- You will have to use the differentiation rules

- ExamTip

- Learn the steps for proof by induction and make sure you can use the method for a number of different types of questions before going into the exam
- The trick to answering these questions well is practicing the pattern of using each step regularly

Worked example

Prove by induction that $\sum_{r=1}^{n} r(r-3)=\frac{1}{3} n(n-4)(n+1)$ for $n \in \mathbb{Z}^{+}$.

Want to prove $\sum_{r=1}^{n} r(r-3)=\frac{1}{3} n(n-4)(n+1)$
$\frac{\text { Basic step }}{\text { Show true for } n=1} \quad$ LHS $=\sum_{r=1}^{1} r(r-3)=(1)(1-3)=-2$
RUS $=\frac{1}{3}(1)(1-4)(1+1)=-2 \quad \therefore$ LHS $=$ RHS so true for $n=1$
Assumption step
Assume true for $n=k$$\quad$ Assume $\sum_{r=1}^{k} r(r-3)=\frac{1}{3} k(k-4)(k+1)$
$\frac{\text { Inductive step }}{\text { Show true for } n=k+1}$ RHS $=\frac{1}{3}(k+1)((k+1)-4)((k+1)+1)=\frac{1}{3}(k+1)(k-3)(k+2)$

$$
\text { LBS }=\sum_{r=1}^{k+1} r(r-3)=(k+1)((k+1)-3)+\sum_{r=1}^{k} r(r-3)
$$

$$
=(k+1)(k-2)+\frac{1}{3} k(k-4)(k+1) \text { Using assumption }
$$

$$
=\frac{1}{3}(k+1)[3(k-2)+k(k-4)] \quad \text { Factorise } \frac{1}{3}(k+1)
$$

$$
D=\frac{1}{3}(k+1)\left[k^{2}-k-6\right]
$$

© 2024 Exam Papers Practice
\therefore LBS $=$ RHS so true for $n=k+1$
Conclusion step
Explain If true for $n=k$ then true for $n=k+1$. Since it is true for $n=1$, the statement is true for all $n \in \mathbb{Z}^{+}$

$$
\sum_{r=1}^{n} r(r-3)=\frac{1}{3} n(n-4)(n+1)
$$

1.5.2 Proof by Contradiction

Proof by Contradiction

What is proof bycontradiction?

- Proof by contradiction is a way of proving a result is true by showing that the negation can not betrue
- It is done by:
- Assuming the negation (opposite) of the result is true
- Sho wing that this then leads to a contradiction

How do Idetermine the negation of a statement?

- The negation of a statement is the opposite
- It is the statement that makes the original statement false
- To negate statements that mention "all", "every", "and" "both":
- Replace these phrases with "there is at least one","or" or "there exists" and include the opposite
- To negate statements that mention "there is at least one", "or" or "there exists":
- Replace these phrases with "all", "every", "and" or "both" and include the opposite
- To negate a statement with "if A occurs then B occurs":
- Replace with "A occurs and the negation of B occurs"
- Examples include:

	Statement	Negation
	ais rational	a is irrational
Copyright © 2024 Exam Pape	everyeven number biggerthan 2 can be written as the sum of two primes	there exists an even number bigger than 2 which cannot be written as a sum of two primes
	n is even and prime	n is not evenor n is not prime
	there is at least one odd perfect number	all perfect numbers are even
	n is a multiple of 5 or a multiple of 3	n is not a multiple of 5 and n is not a multiple of 3
	if n^{2} is even then n is even	n^{2} is even and n is odd

What are the steps for proof bycontradiction?

- STEP 1: Assume the negation of the statement is true
- You assume it is true but then try to prove your assumption is wrong
- For example:To prove that there is no smallest positive numberyou start by assuming there is a smallest positive number called a
- STEP 2: Find two results which contradict each other
- Use algebra to help with this
- Consider how a contradiction might arise
- Forexample: $1 / 2$ ais positive and it is smallerthan awhich contradicts that awas the smallest positive number
- STEP 3: Explain why the original stat ement is true
- In your explanation mention:
- The negation can't be true as it led to a contradiction
- Therefore the original statement must be true

What type of statements might Ibe asked to prove bycontradiction?

- Irrational numbers
- To show $\sqrt[n]{p}$ is irratio nal where p is a prime
- Assume $\sqrt[n]{p}=\frac{a}{b}$ where $a \& b$ are integers with no common factors and $b \neq 0$
- Use algebrato show that p is a factor of both $a \& b$
- To show that $\log _{p}(q)$ is irratio nal where $p \& q$ are different primes
- Assume $\log _{p}(q)=\frac{a}{b}$ where $a \& b$ are integers with no common factors and $b \neq 0$
- Use algebra to show $q^{b}=p^{a}$
- To show that aor b must be irrational if their sum or product is irrational
- Assume $a \& b$ are rational and write as fractions
- Show that $a+b$ or $a b$ is rational
- Prime numbers
- To show a polynomial is never prime
- Assume that it is prime
- Show there is at least one factor that cannot equal 1
- To show that there is an infinite number of prime numbers
- Assume there are n primes $p_{1}, p_{2}, \ldots, p_{n}$
- Show that $p=1+p_{1} \times p_{2} \times \ldots \times p_{n}$ is a prime that is bigger than the n primes
- Odds and evens
- To show that n is even if n^{2} is even

Exam Papers Practice

- Assume n^{2} is even and n is odd
- Show that n^{2} is odd
- Maximum and minimum values
- To show that there is no maximum multiple of 3
- Assume there is a maximum multiple of 3 called a
- Multiply aby3

(9) Exam Tip

- A questionwon't always state that you should use proof by contradiction, you will need to recognise that it is the correct method to use
- There will only be two options (e.g. a number is rational or irrational)
- Contradiction is often used when no other proof seems reasonable

Exam Papers Practice
Copyright
© 2024 Exam Papers Practice

Worked example

Prove the following statements by contradiction.
a) For any integer n, if n^{2} is a multiple of 3 then n is a multiple of 3 .

Assume the negation is true for a contradiction
Assume n^{2} is a multiple of 3 and n is not a multiple of 3
Every integer can be written as one of $3 k-1,3 k, 3 k+1$ for some $k \in \mathbb{Z}$
As n is not a multiple of 3 then $n=3 k+1$ or $n=3 k-1$ for some $k \in \mathbb{Z}$
If $n=3 k+1: n^{2}=(3 k+1)^{2}=9 k^{2}+6 k+1=3\left(3 k^{2}+2 k\right)+1$ so not a multiple of 3
If $n=3 k-1: n^{2}=(3 k-1)^{2}=9 k^{2}-6 k+1=3\left(3 k^{2}-2 k\right)+1$ so not a multiple of 3

- n^{2} is not a multiple of 3

This contradids the statement " n " is a multiple of 3 ".
Therefore the assumption is incorrect
Therefore if n^{2} is a multiple of 3 then n is a multiple of 3 .
b) $\sqrt{3}$ is an irrational number.

Assume the negation is true for a contradiction.
Assume $\sqrt{3}$ is rational so can be written $\sqrt{3}=\frac{a}{b}$ where a and b are integers with no common factors and $b \neq 0$. Square both sides and rearrange
$3=\frac{a^{2}}{b^{2}} \Rightarrow 3 b^{2}=a^{2} \Rightarrow a^{2}$ is a multiple of $3 \Rightarrow a$ is a multiple of 3
Let $a=3 k$ for some $k \in \mathbb{Z}$
$3 b^{2}=a^{2} \Rightarrow 3 b^{2}=9 k^{2} \Rightarrow b^{2}=3 k^{2} \Rightarrow b^{2}$ is a multiple of 3
$\therefore b$ and a are multiples of 3
This contradids the statement " a and b have no common factors". Therefore the assumption is incorrect.

Therefore $\sqrt{3}$ is irrational.

