

Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme

Suitable for all boards

Designed to test your ability and thoroughly prepare you

1.5 Further Proof & Reasoning

IB Maths - Revision Notes

AA HL

1.5.1 Proof by Induction

Proof by Induction

What is proof by induction?

- **Proof by induction** is a way of proving a **result is true for a set of integers** by showing that if it is **true for one integer then it is true for the next integer**
- It can be thought of as dominoes:
 - All dominoes will fall down if:
 - The first domino falls down
 - Each domino falling down causes the next domino to fall down

What are the steps for proof by induction?

- STEP 1: The basic step
 - Show the result is true for the base case
 - This is normally n=1 or 0 but it could be any integer

• For example: To prove
$$\sum_{r=1}^{n} r^2 = \frac{1}{6}n(n+1)(2n+1)$$
 is true for all integers $n \ge 1$ you

ractice

would first need to show it is true for n = 1:

$$\sum_{r=1}^{1} r^2 = \frac{1}{6} (1)((1)+1)(2(1)+1)$$

STEP 2: The assumption step

Assume the result is true for n = k for some integer k

Copyright © 2024 Exam Papers Practice $\sum_{r=1}^{k} r^2 = \frac{1}{6}k(k+1)(2k+1)$ is true

- There is nothing to do for this step apart from writing down the assumption
- STEP 3: The inductive step
 - Using the assumption show the result is true for n = k + 1
 - It can be helpful to simplify LHS & RHS separately and show they are identical
 - The assumption from STEP 2 will be needed at some point

• For example:
$$LHS = \sum_{r=1}^{k+1} r^2$$
 and $RHS = \frac{1}{6}(k+1)((k+1)+1)(2(k+1)+1)$

- STEP 4: The conclusion step
 - State the result is true
 - Explain in words why the result is true
 - It must include:

- If true for n = k then it is true for n = k+1
- Since true for n = 1 the statement is true for all $n \in \mathbb{Z}$, $n \ge 1$ by mathematical induction
- The sentence will be the same for each proof just change the base case from n=lif necessary

What type of statements might lbe asked to prove by induction?

- Sums of sequences
 - If the terms involve factorials then $(k+1)! = (k+1) \times (k!)$ is useful
 - These can be written in the form $\sum_{r=1}^{n} f(r) = g(n)$
 - A useful trick for the inductive step is using $\sum_{r=1}^{k+1} f(r) = f(k+1) + \sum_{r=1}^{k} f(r)$
- **Divisibility** of an expression by an integer
 - These can be written in the form $f(n) = m \times q_n$ where $m \& q_n$ are integers
 - A useful trick for the inductive step is using $a^{k+1} = a \times a^k$
- Complex numbers
 - You can use proof by induction to prove de Moivre's theorem
- Derivatives
 - Such as chain rule, product rule & quotient rule
 - These can be written in the form $f^{(n)}(x) = g(x)$
 - A useful trick for the inductive step is using $f^{(k+1)}(x) = \frac{d}{dx}(f^{(k)}(x))$
 - You will have to use the differentiation rules

Copyrig

© 202 • Exam Tip Practice

- Learn the steps for proof by induction and make sure you can use the method for a number of different types of questions before going into the exam
- The trick to answering these questions well is practicing the pattern of using each step regularly

1.5.2 Proof by Contradiction

Proof by Contradiction

What is proof by contradiction?

- Proof by contradiction is a way of proving a result is true by showing that the negation can not be true
- It is done by:
 - Assuming the negation (opposite) of the result is true
 - Showing that this then leads to a contradiction

How do I determine the negation of a statement?

- The **negation** of a statement is the **opposite**
 - It is the statement that makes the original statement false
- To negate statements that mention "all", "every", "and" "both":
 - Replace these phrases with "there is at least one", "or" or "there exists" and include the opposite
- To negate statements that mention "there is at least one", "or" or "there exists":
 - Replace these phrases with "all", "every", "and" or "both" and include the opposite
- To negate a statement with "if A occurs then B occurs":
 - Replace with "A occurs and the negation of B occurs"
- Examples include:

	Statement	Negation	
Copyright © 2024 Exam Pape	ais <u>rational</u>	ais <u>irrational</u>	tice
	every even number bigger than 2 Servery even number bigger than 2 <u>can be written</u> as the sum of two primes	<u>there exists</u> an even number bigger than 2 which <u>cannot be written</u> as a sum of two primes	
	<i>n</i> is <u>even and prime</u>	<i>n</i> is <u>not even or</u> <i>n</i> is <u>not prime</u>	
	<u>there is at least one odd</u> perfect number	<u>all</u> perfect numbers are <u>even</u>	
	<i>n</i> is a multiple of 5 or a multiple of 3	ni <u>s not a multiple of 5 and</u> n <u>is not a</u> <u>multiple of 3</u>	
	<u>if</u> n²is even <u>then nis even</u>	<i>n</i> ²is even <u>and <i>n</i>is odd</u>	

What are the steps for proof by contradiction?

- STEP 1: Assume the negation of the statement is true
 - You assume it is true but then try to prove your assumption is wrong
 - For example: To prove that there is no smallest positive number you start by assuming there is a smallest positive number called *a*
- STEP 2: Find two results which contradict each other
 - Use algebra to help with this
 - Consider how a contradiction might arise
 - For example: ½*a* is positive and it is smaller than *a* which contradicts that *a* was the smallest positive number
- STEP 3: Explain why the original statement is true
 - In your explanation mention:
 - The negation can't be true as it led to a contradiction
 - Therefore the original statement must be true

What type of statements might lbe asked to prove by contradiction?

- Irrational numbers
 - To show $\sqrt[n]{p}$ is irrational where p is a prime
 - Assume $\sqrt[n]{p} = \frac{a}{b}$ where a & b are integers with no common factors and $b \neq 0$
 - Use algebra to show that *p* is a factor of both *a* & *b*
 - To show that $\log_p(q)$ is irrational where p & q are different primes

• Assume $\log_p(q) = \frac{a}{b}$ where a & b are integers with no common factors and $b \neq 0$

Copyright • Use algebra to show $q^b = p^a$

© 2024 ExaTo show that a of b must be irrational if their sum or product is irrational

- Assume a& bare rational and write as fractions
- Show that *a* + *b* or *ab* is rational
- Prime numbers
 - To show a polynomial is never prime
 - Assume that it is prime
 - Show there is at least one factor that cannot equal 1
 - To show that there is an infinite number of prime numbers
 - Assume there are *n* primes $p_1, p_2, ..., p_n$
 - Show that $p = 1 + p_1 \times p_2 \times \dots \times p_n$ is a prime that is bigger than the *n* primes
- Odds and evens
 - To show that *n* is even if *n*² is even

- Assume *n*² is even and *n* is odd
- Show that *n*² is odd
- Maximum and minimum values
 - To show that there is no maximum multiple of 3
 - Assume there is a maximum multiple of 3 called a
 - Multiply a by 3

😧 Exam Tip

- A question won't always state that you should use proof by contradiction, you will need to recognise that it is the correct method to use
 - There will only be two options (e.g. a number is rational or irrational)
 - Contradiction is often used when no other proof seems reasonable

Exam Papers Practice

© 2024 Exam Papers Practice

Worked example

Prove the following statements by contradiction.

a) For any integer n, if n^2 is a multiple of 3 then n is a multiple of 3.

Assume the negation is true for a contradiction. Assume n^2 is a multiple of 3 and n is not a multiple of 3. Every integer can be written as one of 3k-1, 3k, 3k+1 for some $k \in \mathbb{Z}$. As n is not a multiple of 3 then n=3k+1 or n=3k-1 for some $k \in \mathbb{Z}$. If n=3k+1: $n^2 = (3k+1)^2 = 9k^2 + 6k + 1 = 3(3k^2 + 2k) + 1$ so not a multiple of 3 If n=3k-1: $n^2 = (3k-1)^2 = 9k^2 - 6k + 1 = 3(3k^2 - 2k) + 1$ so not a multiple of 3 n^2 is not a multiple of 3 This contradicts the statement " n^2 is a multiple of 3"

Therefore the assumption is incorrect.

Therefore if n^2 is a multiple of 3 then n is a multiple of 3.

b) $\sqrt{3}$ is an irrational number.

Assume the negation is true for a contradiction. Assume $\sqrt{3}$ is rational so can be written $\sqrt{3} = \frac{a}{b}$ where **CUCC** Copyright a and b are integers with no common factors and $b \neq 0$. Square both sides and rearrange $3 = \frac{a^2}{b^2} \Rightarrow 3b^2 = a^2 \Rightarrow a^2$ is a multiple of $3 \Rightarrow a$ is a multiple of 3 Let a = 3k for some $k \in \mathbb{Z}$ $3b^2 = a^2 \Rightarrow 3b^2 = 9k^2 \Rightarrow b^2 = 3k^2 \Rightarrow b^2$ is a multiple of 3 \therefore b and a are multiples of 3 This contradicts the statement "a and b have no common factors". Therefore the assumption is incorrect. Therefore $\sqrt{3}$ is irrational.