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1.5.1Intro to Complex Numbers

CartesianForm

Whatisanimaginarynumber?

= Upuntilnow,whenwe have encountered anequationsuchas x2 = — 1 wewould have stated
that there are “no real solutions”

= Thesolutionsare X = *./ —1 whichare notreal numbers

= To solve thisissue, mathematicians have defined one of the square roots of negative one as i;an
imaginary number

= /1 =1
= i2=-1

= Thesquareroots of othernegative numbers canbe found byrewritingthem as a multiple of
v 1
= usings/ ab =+/a X/ b

Whatisacomplexnumber?

= Complexnumbers have both areal part and animaginary part
= Forexample:3 + 41
= Therealpartis 3 and the imaginarypartis 4
= Notethattheimaginarypartdoesnotincludethe'i‘
= Complexnumbers are oftendenoted by Z
= Wereferto therealand imaginary parts respectively using Re(Z)and Im(z)
= Two complexnumbers are equalif, and onlyif,both the real and imaginary parts are identical.
» Forexample,3 +21and 3 + 31are not equal

= Thesetofallcomplexnumbersis giventhe symbol C
Whatis CartesianForm?

= There are anumberofdifferent forms that complexnumbers can be writtenin
= Theformz=a+ biis knownas CartesianForm
= g,beR
= Thisis the firstformgiveninthe formulabooklet
= Ingeneral,forz=a+ bi
= Re(z)=a
= Im(z)=b
= Acomplexnumbercanbe easilyrepresented geometricallywhenitis in CartesianForm
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= YourGDC maycallthis rectangular form
= WhenyourGDCis setinrectangularsettings it will give answers in CartesianForm
= |fyourGDCisnotsetinacomplexmode itwillnotgive anyoutputincomplexnumberform

= Make sure youcanfind the settings forusingcomplexnumbers in Cartesian Formand
practice inputting problems

= Cartesianformis the easiestformforadding and subtractingcomplexnumbers

O ExamTip

= Rememberthat complexnumbers have bothareal partand animaginary part
= lis purelyreal(itsimaginarypartis zero)
= jis purelyimaginary(its real partis zero)
= J+iisacomplexnumber(boththe realand imaginaryparts are equalto 1)

@ Worked example

a) Solve the equation X2 = — 9

I
x -t/
USVQWAEXIB x=*[q [T

x =134

b) Solve the equation (X + 7)2 = — 16, givingyouranswers in Cartesian form.

(c+#)" =16

x +7F =i_JT6

x +7 =-_’-J|_6,JT

x+7 =t 4i '\Usin%@=laxm

Rearmnﬁe onswesr ko Covtesion
form:

X =-7Ft 4
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Complex Addition, Subtraction & Multiplication
Howdoladd and subtract complexnumbersinCartesianForm?

= Addingand subtractingcomplexnumbers should be done whentheyare in Cartesianform
= Whenaddingand subtractingcomplexnumbers, simplify the real and imaginary parts separately
= Justlike youwould whencollectinglike terms inalgebraand surds,ordealingwith different
componentsinvectors

« (a+bi)+(c+di)=(a+c)+(b+d)i
« (a+bi)=(c+di)=(a=c)+(b-d)i

Howdo ImultiplycomplexnumbersinCartesianForm?

= Complexnumbers canbe multiplied byaconstantinthe same wayas algebraic expressions:
- k(a+ bi) =ka+ kbi
= Multiplyingtwo complexnumbers in Cartesianformis done in the same way as multiplying two
linearexpressions:
« (a+bi)(c+di)=ac+(ad+ bc)i+bdi2 = ac+(ad+ be)i — bd
= Thisisacomplexnumberwithreal part aCc — bd and imaginary part ad+ bc
= The mostimportant thingwhen multiplying complexnumbers is that
- i2=-1
= Your GDC will be able to multiply complex numbers in Cartesianform
= Practise doingthis and useitto checkyouranswers
= |tiseasyto see that multiplying more thantwo complex numbers togetherin Cartesianform
becomes alengthyprocess proneto errors
= |tis easierto multiplycomplexnumbers whentheyare indifferent forms and usuallyit makes
sense to convertthemfrom Cartesianformto eitherPolarformorEuler’'s form first

= Sometimes whenaquestiondescribes multiple complexnumbers, the notation Zl’ Z2, IS

used torepresent eachcomplexnumber

Howdo ldeal with higher powers of i?

= Becausei?= — 1 thiscanleadtosome interestingresults forhigherpowers ofi
» B=2xi= i
. i4=(i2)2=(_1)2=1
- P=(i2)? xi=i
=@ =(-1p= -1
= We canuse this same approach ofusingi? to deal withmuch higherpowers
C DB =) xi=(-D) xi= —i
= Justrememberthat-lraised to anevenpoweris land raised to anodd poweris -1
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O Exam Tip

= Whenrevisingforyourexams, practice usingyour GDC to check any calculations youdo with
complexnumbers by hand

= This willspeed upusingyour GDC inrectangularformwhilst also givingyoulots of
practice of carrying out calculations by hand

@ Worked example

a)  Simplifythe expression2(8 — 61) — 5(3 +41).
Expand the brackets
Z@L)-@Ly 16 - 120 - 19 -204
Collect the ‘reaL and imm\:j(no«:j parts
6 =15 - 12ZL - 20¢
SimP\'\@x\;)

| -3%

b) Giventwo complexnumbers Z1 =3+4iand Z2 =6+71i,find Z1 X Z2.

EXPOMO\ the  brockets
m- ‘ ‘ N
(3+41)(6 +7‘L) =8 +21u + 240 + 21
\4/

=18 + 21 + 240 +(22)(-Y)
LAsiv\S |

Collect the reol and imaﬂ(nowj pour’rg

I8 +21L +241 =28 = 18-2% + (21 + 24\
Simp\i@&a

-0 +45¢L
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Complex Conjugation & Division

Whendividing complex numbers,the complex conjugate is used to change the denominatorto a
realnumber.

Whatisacomplexconjugate?

= Foragivencomplexnumberz=a+ bi, the complexconjugate of Zisdenoted as Z*,Where
z'=a-bi
= fz=a—bithenz" =a+ bi
= Youwill find that:
» z+7%0s always real because (3 + bi) + (a - bi) =2a
« Forexample: (6 + 5i) + (6 —-5i) =6+6+5i—5i = 12
« 72— Z"i0s always imaginarybecause (a + bi) - (a - bi) =2bi
= Forexample:(6+51) — (6—5i) = 6=6+5i=(—5i) = 10i
» zX Z" isalways realbecause (a + bi)(a - bi) = a2 + abi — abi — b2 = a2 + b? (as
i2=-1)
= Forexample: (6 +5i)(6 = 5i) = 36 +30i — 30i —25i2 = 36 — 25(—1) = 61

Howdo Idivide complexnumbers?

= To divide two complexnumbers:
= STEP1:Express the calculationinthe formofafraction
= STEP 2:Multiplythe top and bottomby the conjugate of the denominator:

a+ bi a+ bi c—di

ctdi | c+di  c—di

= This ensures we are multiplyingby1;so not affecting the overall value

= STEP 3:Multiply out and simplify youranswer
= This should have arealnumberas the denominator

= STEP 4:Write youranswerin Cartesianformas two terms, simplifyingeach termif needed
= ORconvertinto therequired formif needed

= Your GDC willbe able to divide two complexnumbers in Cartesianform
= Practise doingthis and useitto checkyouranswers if youcan
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O Exam Tip

= We canspeedupthe processforfinding zz* byusing the basic patternof
(x+a)(x—a)=x2-22
= We canapplythis to complexnumbers: (a + bi)(a - bi) =a2-b%i2=a2+b?
(using the fact that i2 = - 1)
= So 3 + 41 multiplied byits conjugate would be 32 + 42 =25

@ Worked example

Find the value of(l + 7i) - (3 —i).

Rewrite as o fracktion: L+ Fi ,
3 -4 complex conyuoole

R—_of 23-CL 18 D+L

MuLEi9\5 top ond bottom of the frackion b
the complex conjugoke of the deominator.

l+3i , 3+il = (1+30)(3+1)

3-1 3+u (3-U)(3+1)

="
3+ L+2I1L + 3
9 +3( -3~
the (mqsinmrs ports
eliminoke eoch other

. 3+22. 4+ (-7)
T -1
S'\mp\icj = -4 +22¢
10
Weire in Cortesion = —& + 220
'€°('M 1o \0

-2 .0 Simphfy  final answer.
5 5" J
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1.5.2 Modulus & Argument

Modulus & Argument
Howdo I find the modulus of acomplexnumber?

= The modulus of acomplexnumberisits distance fromthe originwhenplotted onanArgand
diagram

= The modulus of Zis written |Z|

= fZz=X+ iy,then we canuse Pythagoras to show...

- |zl=Vx*+y2

= Amodulusis never negative
What features should lknowabout the modulus of acomplexnumber?

= the modulusisrelated to the complexconjugate by..
« 27" =27"z=|z|?
= Thisisbecause zz* =(x +iy)(x —iy) = x2 + 2
= + = +
Ingeneral, |Z1 Z2| |le |ZZ|

" eg.bothz = 3+4iand z,= - 3 + 41 have amodulus of 5, but z, + z, simplifies to 8i

whichhas amodulus of 8

Howdo I find the argument of acomplexnumber?

= The argument of acomplexnumberis the angle thatit makes onanArgand diagram
= The angle must be takenfromthe positive real axis
= The angle mustbe inacounter-clockwise direction

= Arguments are measured inradians
= Theycanbe givenexactinterms of T

The argument of Zis writtenarg z
Arguments canbe calculated usingright-angled trigonometry
= Thisinvolves usingthe tanratio plus asketchto decide whetheritis positive/negative and
acute/obtuse
What features shouldlknowabout theargument of acomplexnumber?

= Arguments are usuallygivenintherange =TT < arg z < T
= Negative arguments are forcomplexnumbers in the third and fourth quadrants

= Occasionallyyoucould be asked to give argumentsinthe rangeO <argz < 21
= The questionwillmake it clearwhichrange to use

= Theargumentofzero,arg 0isundefined (no angle canbe drawn)
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What are therules formoduliand arguments under multiplicationand division?

Whentwo complexnumbers, Z, and Zz,are multiplied to give Z Zz,theirmoduli are also

1 1

multiplied
lezl = |Zl | EA

V4
1
When two complex numbers, Z1 and Zz,are divided to give — ,theirmoduliare also divided
ZZ
z, ) |Z1 |
z, |Zz|

When two complexnumbers, Z. and Zz,are multiplied to give Z Zz,theirarguments are added

1
- arg (Z1 ZZ) =arg z targ z,

1

%

and Z_,are divided to give — ,theirarguments are subtracted

Whentwo complex numbers,Z1 )
2

O ExamTip

= Always draw aquick sketchto helpyousee what quadrant the complexnumberlies inwhen

working out anargument

= |lookfortherange of values withinwhich you should give yourargument

s Ifitis =7 < arg z < T thenyoumayneed to measureitinthe negative direction

» Ifitis 0 < arg z £ 27 thenyou will always measure in the positive direction (counter -
clockwise)
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@ Worked example
a) Find the modulus and argument of Z= 2+31
|zl = Jzr+3* = i3
Drow o sketeh to help find the arsumentz

4
31 x 2+3i
The stumeyd; s T e =+DJ\_‘(%)
the counter- 3 = 049827
cdockwise ownn ‘e\u L
tokeun from the e z >Re
positive x-oxs
Z
Modz = |2l =] i
argz = 6 = 09383 (35{1)'

b Find the modulus and argumentof w= —1—,/31

lwl = JeO +@@)F =&
Im

£ twe argument IS
= &g >Re. Meosured cdockwise

/ arg W £from the positive

_ /- x-oxs then & will
Find tiis ! be nepative
angle fiest %8 ’
ond gubkrock g
Erom TC.

TC
oL =‘\'o,n_‘($> =+om'"‘(ﬁ) =3
.

Modz = |2l = 2

-0 = - 2T

&fs Z
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1.5.3Introductionto Argand Diagrams

Argand Diagrams
Whatisthecomplexplane?

= The complexplane,sometimes also known as the Argand plane,is atwo-dimensional plane on
which complexnumbers canbe represented geometrically
= |tis similarto atwo-dimensional Cartesiancoordinate grid
= The x-axis is known as the real axis (Re)
= The y-axis is known as the imaginary axis (Im)
= The complexplane emphasises the factthat acomplex numberis two dimensional
= j.eithastwo parts,arealandimaginary part

= Whereas arealnumberonlyhas one dimensionrepresented onanumberline (the x-axis only)

Whatisan Arganddiagram?

= AnArgand diagramis ageometricalrepresentationof complexnumbers onacomplex plane
= Acomplexnumbercanbe represented as eitherapointoravector
= The complexnumber x+)iis represented bythe point with cartesiancoordinate (x, )
= Therealpartisrepresented bythe point onthe real(x-)axis
= Theimaginary partis represented bythe point onthe imaginary (y-)axis
= Complexnumbers are oftenrepresented as vectors
= Aline segmentis drawnfromthe originto the cartesiancoordinate point
= Anarrowis added inthe directionawayfromthe origin
= This allows forgeometricalrepresentations of complexnumbers
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@ Worked example

a) Plotthe complexnumbers z =2+ 2i and 2 =3 - 4ias points onan Argand diagram.

Lobe\l the imosinar:) oxis Im

Im
N
2 2+2i
/LodoeL the reall
oxis Re
=3 >Re
-4 3 -l

You only need bo lobel Ene importank  goivkS on the oxes,

b) Write down the complex numbers represented bythe points Aand B onthe Argand
diagrambelow.

A 143
B: -2 -1
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Complex Roots of Quadratics
What arecomplexroots?

= Aquadratic equationcaneitherhave two realroots (zeros),arepeatedrealrootornorealroots
= Thisdepends onthelocationofthe graph of the quadratic withrespectto the x-axis
= |f aquadratic equationhas no realroots we would previously have stated thatit has no real
solutions
= The quadratic equationwill have a negative discriminant
= This means takingthe squareroot of anegative number
= Complexnumbers provide solutions forquadratic equations that have norealroots

Howdo we solve a quadraticequation whenithascomplexroots?

= Ifaquadratic equationtakes the form ax?+ bx+ c=0itcanbe solved byeitherusing the quadratic
formula orcompleting the square

» Ifaquadratic equationtakes the form ax?+ b= 0it canbe solved byrearranging

= The propertyi=+-lis used

o Jma=Jax—T=Jaxy=1
= [fthe coefficients of the quadratic are realthenthe complexroots willoccurincomplex
conjugate pairs
= [fz=p+qi(g#0)isarootofaquadratic withreal coefficients thenz* =p-qgiisalso aroot
= Therealpart of the solutions will have the same value as the xcoordinate of the turningpointon
the graph of the quadratic
= Whenthe coefficients of the quadratic equation are non-real, the solutions willnot be complex
conjugates
= Tosolve theseyoucanuse the quadratic formula

Howdo we factorise a quadratic equationifithascomplexroots?

» |fwe are givenaquadratic equationinthe form az+ bz+ c=0,where a,b,and ce R, a# O we can
useits complexroots to writeitinfactorised form
= Use the quadratic formulato find the two roots,z=p+giand z*=p- qgi
= This means that z- (p+ gi) and z- (p - gi) must both be factors of the quadratic equation
u Thereforewecanwriteazz+bz+c:a(z—(p+qi))(z—(p—qi))
= This canberearranged into the form a(z- p- gi)(z- p+ qi)

O Exam Tip

= Onceyouhave yourfinalanswers youcancheckyourroots are correct by substitutingyour
solutions backinto the original equation

= Youshould getOifcorrect![Note:Ois equivalentto 0+ Oi]
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@ Worked example

Solve the quadratic equation Z-2z+5 =0 and hence, factorise Z-2z+5.

Use the quadrote focmulo or compleking the
Sopaovre 1o find e Solukions.

Solutions of a quadratic N —b+~b* —4dac
ax”+bx+c=0 = x=——-—_——

equation a2 s a#0

Nno o
" [} []
1
N

0

2 oD LY wl)s) - 221
ya

2(1)
-2+ W)
yA

-+
£.

\

=2—

N

2, =1+ Z2=1-2

If the solutions ore Z, =142 and 2, = |-

then the fockors must ke Z=<(1+2i) and z-(1-2)

22-22 +5 = (2-(Q+2)E=-(1-2)

(-1-2)(2-1+2i)
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