铛
 EXAM PAPERS PRACTICE

Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme
Suitable for all boards
Designed to test your ability and thoroughly prepare you

1.5 Binomial T heorem

AA SL

1.5.1 Binomial The orem

Binomial Theorem

What is the BinomialTheorem?

- The bino mial theorem (sometimes known as the binomial expansion) gives a method for expanding a two-termexpression in a bracket raised to a power
- A bino mial expression is in fact any two terms inside the bracket, howeverin IB the expression will usually be linear
- To expand a bracket with a two-term expression in:
- First choose the most appro priate parts of the expression to assign to a and b
- Then use the formula for the binomial theorem:

$$
(a+b)^{n}=a^{n}+{ }^{n} C_{1} a^{n-1} b+\ldots+{ }^{n} C_{r} a^{n-r} b^{r}+\ldots+b^{n}
$$

- where ${ }^{n} \mathrm{C}_{r}=\frac{n!}{r!(n-r)!}$
- See below formore information on ${ }^{n} \mathrm{C}_{r}$
- Youmayalso see ${ }^{n} \mathrm{C}_{r}$ writtenas $\binom{n}{r}$ or ${ }_{n} \mathrm{C}_{r}$
- You will usually be asked to find the first three orfourterms of an expansion
- Look out forwhetheryou should give your answerin ascending or descending powers of x
- For ascending powers start with the constant term, a^{n}
- Fordescending powers start with the term with x in

2024 Exa Youmaywishto swap a and bover so that you can follow the general formula given in the formulabook

- If you are not writing the full expansion you can either
- show that the sequence continues by putting an ellips is (...) after your final term
- or show that the terms you have found are an approximation of the full sequence by using the sign for approximately equals to (\approx)

Howdo Ifind the coefficient of a single term?

- Most of the time you will be asked to find the coefficient of a term, rather than carry out the whole expansion
- Use the formula for the general term

$$
{ }^{n} \mathrm{C}_{r} a^{n-r} b^{r}
$$

- The question will give you the power of x of the term you are looking for
- Use this to choose which value of r you will need to use in the formula
- This will depend on where the x is in the bracket
- The laws of indices can help you decide which value of r to use:
- For $(a+b x)^{n}$ to find the coefficient of X^{r} use $a^{n-r}(b x)^{r}$
- For $\left(a+b x^{2}\right)^{n}$ to find the coefficient of X^{r} use $a^{\frac{n-r}{2}}\left(b x^{2}\right)^{\frac{r}{2}}$
- For $\left(a+\frac{b}{x}\right)^{n}$ look at how the powers will cancel out to decide which value of r to use
- So for $\left(3 x+\frac{2}{X}\right)^{8}$ to find the coefficient of X^{2} use the term with $r=3$ and to find the constant term use the term with $r=4$
- There are a lot of variations of this so it is usuallye asier to see this by inspection of the exponents
- You may also be given the coefficient of a particular term and asked to find an unknown in the brackets
- Use the laws of indices to choose the correct term and then use the binomial theorem formula to form and solve and equation

O Exam Tip

- Binomial expansion questions can get messy, us e separate lines to keep your wo rking clear and always put terms in brackets

Exam Papers Practice

Worked example

Find the first three terms, in ascending powers of X, in the expansion of $(3-2 x)^{5}$.

$$
a=3 \quad b=-2 x \quad n=5
$$

Substitute values into the formula for $(a+b)^{n}$
$(a+b)^{n}=a^{n}+{ }^{n} c_{1} a^{n-1} b+\ldots+{ }^{n} c_{r} a^{n-r} b^{r}+\ldots+b^{n}$
Question asks for ascending powers of x, so start with the constant term, a^{n}.


```
Watch out }\approx243+5\times81\times-2x+10\times27\times4\mp@subsup{x}{}{2
```

negative

$$
(3-2 x)^{5} \approx 243-810 x+1080 x^{2}
$$

-) ๑ Иの

Papers
Practice
Copyright
© 2024 Exam Papers Practice

The Binomial Coefficient nCr

What is ${ }^{n} C_{r}$?

- If we want to find the number of ways to choose ritems out of n different objects we can use the formulafor ${ }^{n} \mathrm{C}_{r}$
- The formula for rcombinations of nitems is ${ }^{n} \mathrm{C}_{r}=\frac{n!}{r!(n-r)!}$
- This formula is given in the formula booklet along with the formula for the bino mial theorem
- The function ${ }^{n} \mathrm{C}_{r}$ can be written $\binom{n}{r}$ or ${ }_{\mathrm{n}} \mathrm{C}_{r}$ and is often read as ' n chooser'
- Make sure you can find and use the button on your GDC

How does ${ }^{n} C_{r}$ relate to the binomial theorem?

- The formula ${ }^{n} \mathrm{C}_{r}=\frac{n!}{r!(n-r)!}$ is also known as a binomial coefficient
- For a binomial expansion $(a+b)^{n}$ the coefficients of eachterm will be ${ }^{n} \mathrm{C}_{0},{ }^{n} \mathrm{C}_{1}$ and so on up to ${ }^{n} \mathrm{C}_{n}$
- The coefficient of the $r^{t h}$ term will be ${ }^{n} \mathrm{C}_{r}$
- ${ }^{n} C_{n}={ }^{n} C_{0}=1$

207the binomialcoefficients are symmetrical, so ${ }^{n} \mathrm{C}_{r}={ }^{n} \mathrm{C}_{n}-r$

- This can be seen by considering the formula for ${ }^{n} \mathrm{C}_{r}$
${ }^{n} \mathrm{C}_{n-r}=\frac{n!}{(n-r)!(n-(n-r))!}=\frac{n!}{r!(n-r)!}=n C_{r}$

- Exam Tip

- You will most likelyneed to use the formula fornCrat some point in your exam
- Practice using it and don't always rely on yo ur GDC
- Make sure you can find it easily in the formula booklet

Exam Papers Practice

Worked example

Without using a calculator, find the coefficient of the term in X^{3} in the expansion of $(1+x)^{9}$.

$$
n=9, \quad a=1, \quad b=x
$$

Substitute values into the formula for the binomial theorem:
$(a+b)^{n}=a^{n}+\ldots+{ }^{n} C_{r} a^{n-r} b^{r}+\ldots+b^{n}$
where ${ }^{n_{C^{\prime}}}=\frac{n!}{r!(n-r)!}$

$r=3$ gives $9 c_{3} \times(1)^{9-3}(x)^{3}$
Non-calculator, so work out ${ }^{n} C_{r}$ separately

$$
\begin{aligned}
{ }^{q_{C}}=\frac{9!}{3!(9-3)!} & =\frac{9 \times 8 \times 7 \times 66 \times 8 \times 4 \times 36 \times 22}{(3 \times 2)(6 \times 8 \times 4 \times 3 \times 22)} \\
& =\frac{9 \times 8 \times 7}{6}=84
\end{aligned}
$$

so the term when $r=3$ is $84 \times(1)^{6} \times x^{3}$

$$
=84 x^{3}
$$

© 2024 Exam Papers Prac
Coefficient of $x^{3}=84$

Pascal's Triangle

Exam Papers Practice

What is Pascal's Triangle?

- Pascal's triangle is a way of arranging the bino mial coefficients and neatly shows how they are formed
- Each term is formed by adding the two terms above it
- The first row has just the number 1
- Each row begins and ends with a number 1
- From the third row the terms in between the 1 s are the sum of the two terms above it

PASCAL’S TRIANGLE

How does Pascal's Triangle relate to the binomial theorem?

- Pascal's triangle is an alternative way of finding the binomial coefficients, ${ }^{n} \mathrm{C}_{r}$
- It can be useful for finding forsmallervalues of \boldsymbol{n} without a calculator
- Howeverforlargervalues of \boldsymbol{n} it is slow and prone to arithmetic errors
- Taking the first row as zero, $\left({ }^{0} \mathrm{C}_{0}=1\right)$, each row corresponds to the $n^{\text {th }}$ row and the term within that row corresponds to the $r^{\text {th }}$ term

(9) Exam Tip

- In the non-calculator exam Pascal's triangle can be helpful if you need to get the coefficients of an expansion quickly, provided the value of n is not too big

Exam Papers Practice

Worked example

