

Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme

Suitable for all boards

Designed to test your ability and thoroughly prepare you

1.5 Binomial T heorem

IB Maths - Revision Notes

AA SL

1.5.1 Binomial Theorem

Binomial Theorem

What is the Binomial Theorem?

- The **binomial theorem** (sometimes known as the binomial expansion) gives a method for expanding a **two-term** expression in a bracket raised to a power
 - A **binomial expression** is in fact any two terms inside the bracket, however in IB the expression will usually be linear
- To expand a bracket with a two-term expression in:
 - First choose the most appropriate parts of the expression to assign to *a* and *b*
 - Then use the formula for the binomial theorem: $(a+b)^n = a^n + {}^nC_1 a^{n-1}b + \dots + {}^nC_r a^{n-r}b^r + \dots + b^n$

• where
$${}^{n}C_{r} = \frac{n!}{r!(n-r)}$$

• See below for more information on ${}^{n}C$

۱

• You may also see
$${}^{n}C_{r}$$
 written as $\binom{n}{r}$ or ${}_{n}C_{r}$

- You will usually be asked to find the first three or four terms of an expansion
- Look out for whether you should give your answer in ascending or descending powers of x

(n)

- For **ascending** powers start with the constant term, *aⁿ*
- Copyright For **descending** powers start with the term with *x* in
- © 2024 Exam You may wish to swap *a* and *b* over so that you can follow the general formula given in the formula book
 - If you are not writing the full expansion you can either
 - show that the sequence continues by putting an ellipsis (...) after your final term
 - or show that the terms you have found are an approximation of the full sequence by using the sign for approximately equals to (≈)

How do I find the coefficient of a single term?

- Most of the time you will be asked to find the coefficient of a term, rather than carry out the whole expansion
- Use the formula for the general term

 ${}^{n}C_{r}a^{n-r}b^{r}$

- The question will give you the power of x of the term you are looking for
 - Use this to choose which value of r you will need to use in the formula
 - This will depend on where the x is in the bracket
 - The laws of indices can help you decide which value of *r* to use:
 - For $(a + bx)^n$ to find the coefficient of x^r use $a^{n-r}(bx)^r$
 - For $(a + bx^2)^n$ to find the coefficient of x^r use $a^{\frac{n-r}{2}}(bx^2)^{\frac{r}{2}}$
 - For $\left(a + \frac{b}{x}\right)^n$ look at how the powers will cancel out to decide which value of r to use
 - So for $\left(3x + \frac{2}{x}\right)^8$ to find the coefficient of x^2 use the term with r = 3 and to find the

constant term use the term with r = 4

- There are a lot of variations of this so it is usually easier to see this by inspection of the exponents
- You may also be given the coefficient of a particular term and asked to find an unknown in the brackets
 - Use the laws of indices to choose the correct term and then use the binomial theorem formula to form and solve and equation

💽 Exam Tip

 Binomial expansion questions can get messy, use separate lines to keep your working clear and always put terms in brackets

Gopyright

© 2024 Exam Papers Practice

Exam Papers Practice

© 2024 Exam Papers Practice

The Binomial Coefficient nCr

What is ${}^{n}C_{r}$?

- If we want to find the number of ways to choose ritems out of n different objects we can use the formula for ⁿC.
 - The formula for *r* combinations of *n* items is ${}^{n}C_{r} = \frac{n!}{r!(n-r)!}$
 - This formula is given in the formula booklet along with the formula for the binomial theorem
 - The function ${}^{n}C_{r}$ can be written $\binom{n}{r}$ or ${}^{n}C_{r}$ and is often read as '*n chooser*'
 - Make sure you can find and use the button on your GDC

How does ${}^{n}C_{r}$ relate to the binomial theorem?

- The formula ${}^{n}C_{r} = \frac{n!}{r!(n-r)!}$ is also known as a **binomial** coefficient
- For a binomial expansion $(a + b)^n$ the coefficients of each term will be ${}^n C_0, {}^n C_1$ and so on up

to
$${}^{n}C_{n}$$

• The coefficient of the r^{th} term will be ${}^{n}C_{r}$ **Practice**

[©] ²⁰ The binomial coefficients are symmetrical, so ${}^{n}C_{r} = {}^{n}C_{n-r}$

• This can be seen by considering the formula for ${}^{n}C_{r}$

•
$${}^{n}C_{n-r} = \frac{n!}{(n-r)!(n-(n-r))!} = \frac{n!}{r!(n-r)!} = nC_{r}$$

💽 Exam Tip

- You will most likely need to use the formula for nCr at some point in your exam
 - Practice using it and don't always rely on your GDC
 - Make sure you can find it easily in the formula booklet

Worked example

Without using a calculator, find the coefficient of the term in x^3 in the expansion of $(1 + x)^9$.

 $n = 9, \quad \alpha = 1, \quad b = \infty$ Substitute values into the formula for the binomial theorem: $(\alpha + b)^{n} = \alpha^{n} + \dots + {}^{n}C_{r} \alpha^{n-r} b^{r} + \dots + b^{n}$ where ${}^{n}C_{r} = \frac{n!}{r!(n-n)!}$ $(1 + \alpha)^{q} = {}^{\frac{\alpha}{2}} {}^{q}C_{r}(1)^{q-r}(\alpha)^{r} - \frac{\alpha^{3} \alpha \alpha \alpha w rs}{\alpha \alpha \alpha w rs}$ when r = 3. $r = 3 \text{ gives } {}^{q}C_{3} \times (1)^{q-3}(\alpha)^{3}$ Non-calculator, so work out ${}^{n}C_{r}$ separately: ${}^{q}C_{3} = \frac{q!}{3!(q-3)!} = \frac{q \times 8 \times 7 \times 8 \times 3 \times 2}{(3 \times 2)(8 \times 8 \times 4 \times 3 \times 2)}$ $= \frac{q \times 8 \times 7}{6} = 84$ so the term when r = 3 is $8 + (1)^{6} \times \alpha^{3}$ Copyright $\alpha = 2024$ Exam Papers Practice Coefficient of $\alpha^{3} = 84$

Pascal's Triangle

What is Pascal's Triangle?

- Pascal's triangle is a way of arranging the binomial coefficients and neatly shows how they are formed
 - Each term is formed by adding the two terms above it
 - The first row has just the number 1
 - Each row begins and ends with a number 1
 - From the third row the terms in between the 1s are the sum of the two terms above it

© 2024 Exam Papers Practic

How does Pascal's Triangle relate to the binomial theorem?

- Pascal's triangle is an alternative way of finding the binomial coefficients, ${}^{n}C_{\perp}$
 - It can be useful for finding for smaller values of n without a calculator
 - However for larger values of **n** it is slow and prone to arithmetic errors
- Taking the first row as zero, $\binom{0}{C_0} = 1$, each row corresponds to the n^{th} row and the term

within that row corresponds to the $arGamma^{th}$ term

😧 Exam Tip

• In the non-calculator exam Pascal's triangle can be helpful if you need to get the coefficients of an expansion quickly, provided the value of *n* is not too big

