铛
 EXAM PAPERS PRACTICE

Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme
Suitable for all boards
Designed to test your ability and thoroughly prepare you

1.4 Simple Proof \& Reasoning

AA HL

1.4.1 Proof

Language of Proof

What is proof?

- Proof is a series of logical steps which show a result is true for all specified numbers
- 'Seeing' that a result works fora few numbers is not enough to show that it will work for all numbers
- Proof allows us to show (usually algebraically) that the result will work for all values
- You must be familiar with the notation and language of proof
- LHS and RHS are stand ard abbreviations for left-hand side and right-hand side
- Integers are used frequently in the language of proof
- The set of integers is denoted by \mathbb{Z}
- The set of positive integers is denoted by \mathbb{Z}^{+}

How do we prove a statement is true for all values?

- Most of the time you will need to use algebra to show that the left-hand side (LHS) is the same as the right-hand side (RHS)
- You must not move terms from one side to the other
- Start with one side (usually the LHS) and manipulate it to show that it is the same as the other
- A mathematicalidentity is a statement that is true for all values of x (or θ in trigo nometry)
- The symbol \equiv is used to identify an identity
- If yousee this symbol then you can use proof methods to show it is true
- You can complete yo ur proof by stating that RHS = LHS or writing QED

O Exam Tip

- You will need to show each step of yo ur proof clearly and set out your method in a lo gical mannerin the exam
- Be careful not to skip steps

Worked example

Prove that $(2 x-2)(x-3)+2(x-1)=2(x-2)(x-1)$.
Work with LHS first:
Expand brackets:
LHS: $(2 x-2)(x-3)+2(x-1)$
$2 x^{2}-6 x-2 x+6+2 x-2$
Simplify, take care with negatives:
$2 x^{2}-6 x+4$
Factorise the 2 :
$2\left(x^{2}-3 x+2\right)$
Factorise remaining quadratic:

$$
2(x-2)(x-1)=\text { RHS as required. }
$$

$(2 x-2)(x-3)+2(x-1)=2(x-2)(x-1)$

Proof by Deduction

What is proof by deduction?

- A mathematic al and logical argument that shows that a result is true

How do we do proof by deduction?

- A proof by deduction question will often involve showing that a result is true for all integers, consecutive integers or even orodd numbers
- Youcan begin byletting an integer be n
- Use conventions for even ($2 n$) and odd ($2 n-7$ numbers
- You will need to be familiar with sets of numbers $(\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R})$
- \mathbb{N} - the set of natural numbers
- \mathbb{Z} - the set of integers
- \mathbb{Q} - the set of quotients (rational numbers)
- \mathbb{R}-the set of real numbers

What is proof byexhaustion?

- Proof byexhaustionis a way to show that the desired result works for every allowed value
- This is a good method when there are only a limited number of cases to check
- Using proof byexhaustion means testing everyallowed value not just showing a few examples
- The allowed values could be specific values
- They could also be split into cases such as even and odd

- Exam Tip

- Try the result you are proving with a few different values
- Use a sequence of them (eg $1,2,3$)
- Trydifferent types of numbers (positive, negative, zero)
- This may help you see a pattern and spot what is going on

Worked example

Prove that the sum of any two consecutive odd numbers is always even.

Let $2 n-1$ be an odd number \not
must be even
Let two consecutive odd integers be:

$$
2 n-1,2 n+1 \text { next odd number }
$$

Then their sum is:

$$
2 n-1+2 n+1 \equiv 4 n
$$

$$
=2(2 n)
$$

Any multiple of 2 must be even.

Exam Papers Practice
Copyright
© 2024 Exam Papers Practice

Disproof by Counter Example

What is disproof by counter-example?

- Disproving a result involves finding a value that does not work in the result
- That value is called a counter-example

How do Idisprove a result?

- Youonly need to find one value that does not work
- Look out for the set of numbers for which the statement is made, it will often be just integers or natural numbers
- Numbers that have unusual results are often involved
- It is often a good idea to try the values 0 and lfirst as they often behave in different ways to othernumbers
- The number 2 also behaves differently to other even numbers
- It is the only even prime number
- It is the only number that satisfies $n+n=n^{n}$
- If it is the set of real numbers considerhow rational and irrational numbers behave differently
- Think abo ut how positive and negative numbers behave differently
- Particularly when working with inequalities

© Exam Tip

- Read the question carefully, looking out for the set of numbers for which you need to prove the result

Worked example

For each of the follow wing statements, show that they are false by giving a counterexample:
a) Given $n \in \mathbb{Z}^{+}$, if n^{2} is a multiple of 4 , then n is also a multiple of 4 .
$n \in \mathbb{Z}^{+} \longleftarrow$ set of positive integers only
We are only interested in positive integers so start
by trying 1,2 etc.
$1^{2}=1($ not a multiple of 4$)$
$2^{2}=4 \quad n^{2}=4$ (multiple of 4)
$n=2$ (not a multiple of 4)

> Let $n=2: n^{2}=4$ (multiple of 4)
> $n=2$ (not a multiple of 4)
b,
Given $X \in \mathbb{Z}$ then $3 x$ is always greater than $2 x$
$x \in \mathbb{Z} \longleftarrow$ set of integers only
We are interested in both positive and negative
integers and zero so consider how each of
these groups behave:
Positive integers, e.g. Let $x=1$:

- M-

Copyright
© 2024 Exam Papers

$$
\begin{aligned}
& 2 x=2 \\
& 3 x=3 \quad \therefore 3 x>2 x \\
& \text { Zero: } \\
& \text { Let } x=0 \\
& 2 x=0 \\
& 3 x=0 \quad \therefore \quad 3 x=2 x \quad \text { (this is enough to disprove } \\
& \text { the result) }
\end{aligned}
$$

Negative integers, e.g. Let $x=-1$:
$2 x=-2$
$3 x=-3 \therefore 2 x>3 x$ (Any negative integer can
disprove the result)

$$
\begin{aligned}
& \text { Let } x=0 \\
& 2 x=0 \\
& 3 x=0 \quad \therefore \quad 3 x \ngtr 2 x
\end{aligned}
$$

